和小哥哥一起刷洛谷(4) 图论之广度优先搜索BFS
关于bfs:
你怎么会连这个都不知道!!!自己好好谷歌一下!!!(其实我也刚学)
bfs伪代码:
while(队列非空){
取出队首元素u;
弹出队首元素;
u染色为黑色;
for(int i=0;i<u的出度){
if(i非白色) continue;
u的第i个出线连着的点入队;
i染为灰色;
}
}
可爱的分割线
无权最短路
显然,你在洛谷上是搜不到这题的,因为这是我们学校团队的题。所以还是找个小板凳专心听我讲吧。
题目描述:
给定无权无向图G(V,E)和源点s/终点t,求 s->t 的最短路径。
假设读入边的列表是有(字典)序的(既邻接表就是有序的)。
输入输出格式:
输入格式:
第一行包含4个整数N、M、s、t,表示该图共有N个结点和M条无向边。(N <= 5000,M <= 200000)。起点为s,终点为t。
接下来M行,每行包含2个整数{u,v},表示有一条无向边连接结点u、v
输出格式:
输出最短路的长度(边数)
若无法到达,输出"No path"
样例:
输入:
4 3 1 4
1 2
1 3
2 4
输出:
2
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
const int NR=5005;
using namespace std;
struct Edge{
//一个存储权值的结构体,为bfs模板,此题无用
int v,w;
Edge(int v,int w):v(v),w(w){}
};
vector<Edge> save[5005];//邻接表
int d[NR];//记录距离的数组
int main()
{
int n,m,s,t;
cin>>n>>m>>s>>t;//输入
char color[n+1];//判断是否去过(没去过:"w",正在考虑(在队列中):"g",已经完全考虑:"b")
memset(color,'w',sizeof(color));//染色数组重置为白色
for(int i=1;i<=m;i++){
int a,b;
cin>>a>>b;//输入每条线的起点和终点
save[a].push_back(Edge(b,1));//因为是无向图,所以在起点连接的点中增加终点
save[b].push_back(Edge(a,1));//还要在终点连接的点中增加起点
}
d[s]=0;//起点距离起点的距离设为零
queue<int> q;//bfs处理队列
q.push(s);//起点入队
color[s]='g';//起点染色成灰色
while(!q.empty()){
int u=q.front();//取出队首的一项
q.pop();//弹出
color[u]='b';//标记为黑色
for(int i=0;i<save[u].size();i++){//拓展出所有子节点
if(color[save[u][i].v]!='w') continue;
if(save[u][i].v==t){
cout<<d[u]+1;//如果这个位置是终点,则输出
return 0;
}
d[save[u][i].v]=d[u]+1;//计算距离
color[save[u][i].v]='g';//染灰色
q.push(save[u][i].v);//进队
}
}
cout<<"No path";
return 0;
}
和小哥哥一起刷洛谷(4) 图论之广度优先搜索BFS的更多相关文章
- 和小哥哥一起刷洛谷(5) 图论之深度优先搜索DFS
关于dfs dfs伪代码: void dfs(s){ for(int i=0;i<s的出度;i++){ if(used[i]为真) continue; used[i]=1; dfs(i); } ...
- 和小哥哥一起刷洛谷(8) 图论之Floyd“算法”
关于floyd floyd是一种可以计算图中所有端点之间的最短的"算法",其伪代码如下: for(所有起点i) for(所有终点j) 如果i=j: i到j最短路设为0 如果i与j相 ...
- 和小哥哥一起刷洛谷(7) 图论之dijkistra算法
关于dijkstra 维基百科 戴克斯特拉算法(英语:Dijkstra's algorithm,又译迪杰斯特拉算法)由荷兰计算机科学家艾兹赫尔·戴克斯特拉在1956年提出.戴克斯特拉算法使用了广度优先 ...
- 和小哥哥一起刷洛谷(6) 图论之SPFA算法
关于\(spfa\) spfa伪代码: void spfa(s){ 最短路数组全部设为无限大; 队列 q; 起点s入队; s离s的距离设为零; while(队列非空){ 取出队首;弹出队首; for( ...
- 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)
莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...
- P4554 小明的游戏 (洛谷) 双端队列BFS
最近没有更新博客,全是因为英语,英语太难了QWQ 洛谷春令营的作业我也不会(我是弱鸡),随机跳了2个题,难度不高,还是讲讲吧,学学新算法也好(可以拿来水博客) 第一题就是这个小明的游戏 小明最近喜欢玩 ...
- 【题解】洛谷P1731 [NOI1999] 生日蛋糕(搜索+剪枝)
洛谷P1731:https://www.luogu.org/problemnew/show/P1731 思路 三重剪枝 当前表面积+下一层表面积如果超过最优值就退出 当前体积+下一层体积如果超过总体积 ...
- 洛谷 P1126 机器人搬重物 (BFS)
题目链接:https://www.luogu.org/problemnew/show/P1126 吐槽:这题很阴险 一开始没把格子图转化成点图:30分 转化成点图,发现样例过不去,原来每步要判断vis ...
- AC日记——小A的糖果 洛谷七月月赛
小A的糖果 思路: for循环贪心: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #defi ...
随机推荐
- Django:ORM介绍
1.ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过使用描述 ...
- 原生JS-----一个剪刀石头布游戏
html: <h1>这是一个剪刀石头布游戏</h1> <h2>请出拳吧!少年!</h2> <h3>您已经获胜了<span id=&qu ...
- vue标签内循环数据逗号分隔
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 原子性atomic/nonatomic
原子性:并发编程中确保其操作具备整体性,系统其它部分无法观察到中间步骤,只能看到操作前后的结果. 决定编译器生成的getter和setter是否原子(natomic)操作. i 因此,atomic ...
- python智能提取省、市、区地址
工具原文 https://github.com/DQinYuan/chinese_province_city_area_mapper 说明: https://blog.csdn.net/qq_3325 ...
- Availability-group DDL operations are permitted only when you are using the master database. Run the USE MASTER command, and retry your availability-group DDL command.
Question: SQL SERVER alwayson在向AG中添加DB最后一步在副本中将此DB添加入AG时报错: Availability-group DDL operations are p ...
- 将excel中的数据转为json格式
---恢复内容开始--- 用来总结工作中碰导一些错误,可以让自己在碰到相同错误的时候不至于重新走一遍.... 昨天导入数据的时候,碰到了一个问题是将一个大数组里面的每一个元素中的一些不要的去提出掉,本 ...
- 1、uiautomator2常用语法
uiautomator2常用语法 连接设备 使用USB连接: d=u2.connect_USB('148b4090')输入手机序列号 d是给当前连接设备定位一个变量 获取设备的信息: print(d. ...
- 191010 python3分数划分ABC等级
# 题目:利用条件运算符的嵌套来完成此题:学习成绩>=90分的同学用A表示,# 60-89分之间的用B表示,60分以下的用C表示. while True: score = input(" ...
- Vim编译器的相关知识
Vim编译器相关知识 1.关于Vim编译器 在热门Linux操作系统中都会默认安装一款超好用的文本编辑器——名字叫“vim”,vim是vi编辑器的升级版. vim 具有程序编辑的能力,可以主动的以字体 ...