iOS 多线程的简单理解(3)执行方式 + 执行对列 的组合
通过对前面两偏线程理解的总结,自己对线程的理解也逐渐加深,梳理的清晰起来……
通常在使用线程 的时候,都是要用到 执行对列,执行方式,执行任务,
现在开始新一轮的深入
3. 1. 1 同步 + 串行
- (void)syncSerialQueue{
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);
NSLog(@" 同步 + 串行 start:::%@ ",[NSThread currentThread]);
dispatch_sync(queue, ^{ // 添加任务 1
for (int i = 0; i < 3; i++) {
NSLog(@"同步 + 串行 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_sync(queue, ^{ // 添加任务 2
for (int i = 10; i < 13; i++) {
NSLog(@"同步 + 串行 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"同步 + 串行 end :::%@",[NSThread currentThread]);
}
执行结果:::
2017-12-21 09:10:16.725075+0800 DeadThread[10455:3327379] 同步 + 串行 start:::<NSThread: 0x60800006b4c0>{number = 1, name = main}
2017-12-21 09:10:16.725222+0800 DeadThread[10455:3327379] 同步 + 串行 index 0 ::: <NSThread: 0x60800006b4c0>{number = 1, name = main}
2017-12-21 09:10:16.725339+0800 DeadThread[10455:3327379] 同步 + 串行 index 1 ::: <NSThread: 0x60800006b4c0>{number = 1, name = main}
2017-12-21 09:10:16.725530+0800 DeadThread[10455:3327379] 同步 + 串行 index 2 ::: <NSThread: 0x60800006b4c0>{number = 1, name = main}
2017-12-21 09:10:16.725615+0800 DeadThread[10455:3327379] 同步 + 串行 index 10 ::: <NSThread: 0x60800006b4c0>{number = 1, name = main}
2017-12-21 09:10:16.725765+0800 DeadThread[10455:3327379] 同步 + 串行 index 11 ::: <NSThread: 0x60800006b4c0>{number = 1, name = main}
2017-12-21 09:10:16.725821+0800 DeadThread[10455:3327379] 同步 + 串行 index 12 ::: <NSThread: 0x60800006b4c0>{number = 1, name = main}
2017-12-21 09:10:16.725870+0800 DeadThread[10455:3327379] 同步 + 串行 end :::<NSThread: 0x60800006b4c0>{number = 1, name = main}
总结结果:::
1. 同步 : 在当前线程执行,不开启新的线程,任务顺序执行
2. 串行 :添加的任务 顺序排列,顺序执行
图示::::

3.1.2 同步 + 并行
- (void)syncConcurrentQueue{
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"同步 + 并行 start:::%@ ",[NSThread currentThread]);
dispatch_sync(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"同步 + 并行 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_sync(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"同步 + 并行 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"同步 + 并行 end :::%@",[NSThread currentThread]);
}
执行结果:::
2017-12-21 09:37:05.376797+0800 DeadThread[10595:3430843] 同步 + 并行 start:::<NSThread: 0x6040000759c0>{number = 1, name = main}
2017-12-21 09:37:05.376915+0800 DeadThread[10595:3430843] 同步 + 并行 index 0 ::: <NSThread: 0x6040000759c0>{number = 1, name = main}
2017-12-21 09:37:05.377000+0800 DeadThread[10595:3430843] 同步 + 并行 index 1 ::: <NSThread: 0x6040000759c0>{number = 1, name = main}
2017-12-21 09:37:05.377101+0800 DeadThread[10595:3430843] 同步 + 并行 index 2 ::: <NSThread: 0x6040000759c0>{number = 1, name = main}
2017-12-21 09:37:05.377262+0800 DeadThread[10595:3430843] 同步 + 并行 index 10 ::: <NSThread: 0x6040000759c0>{number = 1, name = main}
2017-12-21 09:37:05.377372+0800 DeadThread[10595:3430843] 同步 + 并行 index 11 ::: <NSThread: 0x6040000759c0>{number = 1, name = main}
2017-12-21 09:37:05.377440+0800 DeadThread[10595:3430843] 同步 + 并行 index 12 ::: <NSThread: 0x6040000759c0>{number = 1, name = main}
2017-12-21 09:37:05.377514+0800 DeadThread[10595:3430843] 同步 + 并行 end :::<NSThread: 0x6040000759c0>{number = 1, name = main}
总结结果:::
1. 同步 : 在当前线程执行,不开启新的线程,任务顺序执行
2. 并行 :添加的任务 不是顺序排列
图示::::

3.2.1 异步 + 串行
- (void)asyncSerialQueue{
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);
NSLog(@"异步 + 串行 start:::%@ ",[NSThread currentThread]);
dispatch_async(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"异步 + 串行 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_async(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"异步 + 串行 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"异步 + 串行 end :::%@",[NSThread currentThread]);
}
执行结果::::
2017-12-21 09:43:04.903888+0800 DeadThread[10647:3468013] 异步 + 串行 start:::<NSThread: 0x60c0000654c0>{number = 1, name = main}
2017-12-21 09:43:04.904032+0800 DeadThread[10647:3468013] 异步 + 串行 end :::<NSThread: 0x60c0000654c0>{number = 1, name = main}
2017-12-21 09:43:04.904056+0800 DeadThread[10647:3468266] 异步 + 串行 index 0 ::: <NSThread: 0x604000074580>{number = 3, name = (null)}
2017-12-21 09:43:04.904127+0800 DeadThread[10647:3468266] 异步 + 串行 index 1 ::: <NSThread: 0x604000074580>{number = 3, name = (null)}
2017-12-21 09:43:04.904180+0800 DeadThread[10647:3468266] 异步 + 串行 index 2 ::: <NSThread: 0x604000074580>{number = 3, name = (null)}
2017-12-21 09:43:04.904370+0800 DeadThread[10647:3468266] 异步 + 串行 index 10 ::: <NSThread: 0x604000074580>{number = 3, name = (null)}
2017-12-21 09:43:04.904534+0800 DeadThread[10647:3468266] 异步 + 串行 index 11 ::: <NSThread: 0x604000074580>{number = 3, name = (null)}
2017-12-21 09:43:04.904603+0800 DeadThread[10647:3468266] 异步 + 串行 index 12 ::: <NSThread: 0x604000074580>{number = 3, name = (null)}
总结结果:::
1.异步: 开启新的线程,不影响当前线程;
2.串行: 添加 任务 顺序排列,顺序执行

3.2.2 异步 + 并行
- (void)asyncConcurrentQueue{
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"异步 + 并行 start:::%@ ",[NSThread currentThread]);
dispatch_async(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"异步 + 并行 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_async(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"异步 + 并行 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"同步 + 并行 end :::%@",[NSThread currentThread]);
}
执行结果:::
2017-12-21 09:50:40.207852+0800 DeadThread[10727:3517966] 异步 + 并行 start:::<NSThread: 0x60c00006d880>{number = 1, name = main}
2017-12-21 09:50:40.208038+0800 DeadThread[10727:3517966] 同步 + 并行 end :::<NSThread: 0x60c00006d880>{number = 1, name = main}
2017-12-21 09:50:40.208045+0800 DeadThread[10727:3518055] 异步 + 并行 index 10 ::: <NSThread: 0x60400006f3c0>{number = 3, name = (null)}
2017-12-21 09:50:40.208066+0800 DeadThread[10727:3518052] 异步 + 并行 index 0 ::: <NSThread: 0x600000075700>{number = 4, name = (null)}
2017-12-21 09:50:40.208139+0800 DeadThread[10727:3518055] 异步 + 并行 index 11 ::: <NSThread: 0x60400006f3c0>{number = 3, name = (null)}
2017-12-21 09:50:40.208197+0800 DeadThread[10727:3518052] 异步 + 并行 index 1 ::: <NSThread: 0x600000075700>{number = 4, name = (null)}
2017-12-21 09:50:40.208327+0800 DeadThread[10727:3518055] 异步 + 并行 index 12 ::: <NSThread: 0x60400006f3c0>{number = 3, name = (null)}
2017-12-21 09:50:40.208361+0800 DeadThread[10727:3518052] 异步 + 并行 index 2 ::: <NSThread: 0x600000075700>{number = 4, name = (null)}
总结结果::::
1.异步:开启线程能力;
2.并行:任务队列不顺序排列,同时执行;
3.开启线程的数量:取决于添加任务的数量
图示:::

iOS 多线程的简单理解(3)执行方式 + 执行对列 的组合的更多相关文章
- iOS 多线程的简单理解(1) 方式 :同步 异步
最近遇到特别糟糕的面试,过程中提到多次对多线程的处理问题,并没有很好的给予答复和解决,所以在这里做个简单的备案: 期望能更加了解和熟练使用 多线程技术: 下面都是自己的总结,如果存在不对的,或者不足, ...
- iOS 多线程的简单理解(4) 线程锁的简单使用
要用到多线程 ,就不得不考虑,线程之间的交互,线程是否安全 推荐一个原文链接 是关于 线程锁的基本使用的 http://blog.csdn.net/qq_30513483/article/detai ...
- iOS 多线程的简单理解(2) 队列 :串行 ,并行,MainQueue,GlobalQueue
多线程队列是装载线程任务的队形结构.(系统以先进先出的方式调度队列中的任务执行 FIFO).在GCD中有两种队列: 串行队列.并发队列. 队列 :串行队列.并发队列,全局主对列,全局并发队列 2.1. ...
- ios多线程开发的常用三种方式
1.NSThread 2.NSOperationQueue 3.GCD NSThread: 创建方式主要有两种: [NSThread detachNewThreadSelector:@selector ...
- C#多线程的简单理解
一.CLR线程池基础 创建和销毁线程是一个昂贵的操作,所以CLR管理了一个线程池(thread pool),可以将线程池看成一个黑盒. CLR初始化时,线程池中是没有线程的.线程的初始化与其他线程一样 ...
- ios -RunLoop(简单理解)
一. RunLoop简介 RunLoop字面意思是运行时,即跑圈得意思.它可以在我们需要的时候自己跑起来运行,在我们没有操作的时候就停下来休息,充分节省CPU资源,提高程序性能. 二. RunLoop ...
- iOS NSRunloop的简单理解
最近学习了下NSRunloop. 作一下简单的理解: 1.runloop与线程的关系,每一个线程创建是都会有伴有一个runloop诞生,runloop用来接收事件源,让线程执行事件.当没有事件处理时, ...
- iOS On-Demand Resources简单理解
ios9引入了一个新功能,On-Demand Resources,它是app thinning 的一部分.这个机能简单的说,就是在下载app的时候,app中包含的不重要资源不下载,等到需要时,在由系统 ...
- iOS 块的简单理解
占位 自己主动转载器那小子,你转完了没? 转完了,我开写了哈! Block,就两个事儿,一个是引用,一个是实例,除了实现处.其他地方都是引用. 以此思路.再继续看看引用和实现的定义方式吧. 參考官方文 ...
随机推荐
- MongoDB 常用操作命令大全
一.数据库常用命令1.Help查看命令提示 复制代码 代码如下: helpdb.help();db.yourColl.help();db.youColl.find().help();rs.help() ...
- 1.5 synchronized其他概念
synchronized锁重入: 关键字synchronized拥有锁重入的功能,也就是使用synchronized时,当一个线程得到了一个对象的锁后,再次请求此对象时是可以再次得到对象的锁. 输出结 ...
- 【HTML】行内元素与块级元素
一.行内元素与块级元素的三个区别 1.行内元素与块级元素直观上的区别 行内元素会在一条直线上排列,都是同一行的,水平方向排列 块级元素各占据一行,垂直方向排列.块级元素从新行开始结束接着一个断行. 2 ...
- PHP操作数据库(以MySQL为例)
一.开启扩展配置: 在php.ini的extension板块中增加一行extension=php_mysqli.dll 重启PHP,在phpinfo查看 <?php echo phpinfo() ...
- 12、基于yarn的提交模式
一.三种提交模式 1.Spark内核架构,其实就是第一种模式,standalone模式,基于Spark自己的Master-Worker集群. 2.第二种,是基于YARN的yarn-cluster模式. ...
- 数据库已经最优,每次操作50万条数据,怎么提高API接口的速度?
第一种可以使用负载均衡,10台,就每台5W条数据第二种每台机器.可以把添加任务队列.利用多线程解决IO密集型任务的特点.第三种利用异步协程方式提高调度行为
- 信竞四定律orz
正常代码不写#define @zdx 平时刷题不写freopen @liuziwen 循环内部不写return 0 @asdfo123 主程序内不写char array @asdfo123 输出时间: ...
- ZR#1004
ZR#1004 解法: 对于 $ (x^2 + y)^2 \equiv (x^2 - y)^2 + 1 \pmod p $ 化简并整理得 $ 4x^2y \equiv 1 \pmod p $ 即 $ ...
- GO语言strconv包的使用
Go语言中strconv包实现了基本数据类型和其字符串表示的相互转换. strconv包 strconv包实现了基本数据类型与其字符串表示的转换,官方文档中文版. string与int类型转换 Ato ...
- ubuntu之路——day11.6 多任务学习
在迁移学习transfer learning中,你的步骤是串行的sequential process 在多任务学习multi-task learning中,你试图让单个神经网络同时做几件事情,然后这里 ...