HDU - 4507 - 吉哥系列故事——恨7不成妻(数位DP,数学)
链接:
https://vjudge.net/problem/HDU-4507
题意:
单身!
依然单身!
吉哥依然单身!
DS级码农吉哥依然单身!
所以,他生平最恨情人节,不管是214还是77,他都讨厌!
吉哥观察了214和77这两个数,发现:
2+1+4=7
7+7=72
77=711
最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!
什么样的数和7有关呢?
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。
思路:
单纯的算个数就很简单。看了大佬博客发现除了麻烦点其他还好。
考虑数学公式。假如我们当前位是第p位,值为i,低位有a和b两个数满足条件。
如果要把a和b合并,首先可算出和im[p]cnt+a+b,cnt就是满足的个数,m是10的几次方。
这样就可以更新和。
再考虑平方,(a+b)^2 = a2+2*a*b+b2
所有就有im[p]sum2+sqr,其中sum是a+b,sqr是a2+b2,就是返回回来的平方和。
还要再加上(im[p])^2*cnt,要考虑返回回来的可行解数。
注意取模即可。
代码:
// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10;
struct Node
{
LL cnt, sum, sqr;
Node()
{
cnt = -1;
sum = sqr = 0;
}
Node(LL _cnt, LL _sum, LL _sqr): cnt(_cnt), sum(_sum), sqr(_sqr){}
}F[20][10][10];
int dig[20];
LL m[20];
LL a, b, n;
Node Dfs(int pos, LL sum1, LL sum2, bool lim)
{
if (pos == -1)
{
if (sum1 != 0 && sum2 != 0)
return Node(1, 0, 0);
return Node(0, 0, 0);
}
if (!lim && F[pos][sum1][sum2].cnt != -1)
return F[pos][sum1][sum2];
int up = lim ? dig[pos] : 9;
Node ans(0, 0, 0), tmp;
for (LL i = 0;i <= up;i++)
{
if (i == 7)
continue;
tmp = Dfs(pos-1, (sum1+i)%7, (sum2*10+i)%7, lim && i == up);
ans.cnt = (ans.cnt + tmp.cnt)%MOD;
ans.sum = (ans.sum + (i*m[pos]%MOD*tmp.cnt%MOD + tmp.sum)%MOD)%MOD;
ans.sqr = (ans.sqr + (i*m[pos]%MOD*2%MOD*tmp.sum%MOD+tmp.sqr)%MOD)%MOD;
ans.sqr = (ans.sqr + (i*m[pos]%MOD)*(i*m[pos]%MOD)%MOD*tmp.cnt)%MOD;
}
if (!lim)
F[pos][sum1][sum2] = ans;
return ans;
}
LL Solve(LL x)
{
int p = 0;
while(x)
{
dig[p++] = x%10;
x /= 10;
}
return Dfs(p-1, 0, 0, 1).sqr;
}
int main()
{
// freopen("test.in", "r", stdin);
m[0] = 1;
for (int i = 1;i < 20;i++)
m[i] = m[i-1]*10;
int t;
scanf("%d", &t);
while(t--)
{
scanf("%lld %lld", &a, &b);
printf("%lld\n", ((Solve(b)-Solve(a-1))%MOD+MOD)%MOD);
}
return 0;
}
HDU - 4507 - 吉哥系列故事——恨7不成妻(数位DP,数学)的更多相关文章
- 吉哥系列故事——恨7不成妻(数位DP)
吉哥系列故事——恨7不成妻 http://acm.hdu.edu.cn/showproblem.php?pid=4507 Time Limit: 1000/500 MS (Java/Others) ...
- hdu4507吉哥系列故事——恨7不成妻 (数位dp)
Problem Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥观察了214和77这两个数,发现: ...
- hdu-4507 吉哥系列故事——恨7不成妻 数位DP 状态转移分析/极限取模
http://acm.hdu.edu.cn/showproblem.php?pid=4507 求[L,R]中不满足任意条件的数的平方和mod 1e9+7. 条件: 1.整数中某一位是7:2.整数的每一 ...
- HDU 4507 吉哥系列故事――恨7不成妻(数位DP+结构体)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4507 题目大意:如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关 1.整数中某一位是7: ...
- HDU 4507 吉哥系列故事——恨7不成妻
需要推下平方和的式子..维护个数,和,平方和. #include<iostream> #include<cstdio> #include<cstring> #inc ...
- HDU 4507 吉哥系列故事——恨7不成妻 (数位DP)
题意: 如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关: 1.整数中某一位是7: 2.整数的每一位加起来的和是7的整数倍: 3.这个整数是7的整数倍: 给定一个区间[L,R],问在此区 ...
- HDU-4507 吉哥系列故事——恨7不成妻 数位DP
题意:给定区间[L, R]求区间内与7无关数的平方和.一个数当满足三个规则之一则认为与7有关:1.整数中某一位是7:2.整数的每一位加起来的和是7的整数倍:3.这个整数是7的整数倍: 分析:初看起来确 ...
- 【hdu4507】吉哥系列故事——恨7不成妻 数位dp
题目描述 求 $[L,R]$ 内满足:数位中不包含7.数位之和不是7的倍数.本身不是7的倍数 的所有数的平方和 mod $10^9+7$ . 输入 输入数据的第一行是case数T(1 <= T ...
- hdu4507 吉哥系列故事——恨7不成妻[数位DP]
这题面什么垃圾玩意儿 首先看到问题格式想到数位DP,但是求的是平方和.尝试用数位DP推出. 先尝试拼出和.设$f[len][sum][mod]$表示填到$len$位,已填位置数位和$sum$,数字取余 ...
随机推荐
- PB数据窗口只存储过程数据源创建
必须在 Manual Rault Set 上打勾,不然不能设置显示列. 显示列的数据必须和存储过程返回值的顺序一致,否则会出现数据和列名两边不对应的情况
- Spring Cloud Stream如何消费自己生产的消息
在上一篇<Spring Cloud Stream如何处理消息重复消费>中,我们通过消费组的配置解决了多实例部署情况下消息重复消费这一入门时的常见问题.本文将继续说说在另外一个被经常问到的问 ...
- pip下载加速的方式
两种方式 一.临时方式 可以在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple. 例如下载或者更新: 下载:pip install -i h ...
- WPF 不要给 Window 类设置变换矩阵(应用篇)
原文:WPF 不要给 Window 类设置变换矩阵(应用篇) WPF 的 Window 类是不允许设置变换矩阵的.不过,总会有小伙伴为了能够设置一下试图绕过一些验证机制. 不要试图绕过,因为你会遇到更 ...
- docker 入坑1
本文是记录一下学习docker的过程,希望可以帮助到入门的朋友. 系统:ubuntu16.04 docker:18.09 打开官网:https://docs.docker.com/install/li ...
- fastDFS的入门程序
导入jar包 <dependency> <groupId>cn.bestwu</groupId> <artifactId>fastdfs-client- ...
- vue 生命周期的详解
一.vue生命周期的解析 > 1>什么是vue生命周期 每个vue实例在被创建之前都要经过一系列的初始化过程,这个过程就是vue的生命周期.详细来说,就是Vue实例从开始创建,初始化数据, ...
- Nginx的proxy buffer参数总结
1. proxy_buffering 语法:proxy_buffering on|off 默认值:proxy_buffering on 上下文:http,server,location 作用:该指令开 ...
- Python学习日记(十五) collections模块
在内置函数(dict.list.set.tuple)的基础上,collections模块还提供了几个其他的数据类型:Counter.deque.defaultdict.namedtuple和Order ...
- MySQL连接查询流程源码
http://blog.itpub.net/29510932/viewspace-2129300/ 初始化: 点击(此处)折叠或打开 main |-mysqld |-my_init // 初始话线程变 ...