链接:

https://vjudge.net/problem/HDU-4507

题意:

  单身!

  依然单身!

  吉哥依然单身!

  DS级码农吉哥依然单身!

  所以,他生平最恨情人节,不管是214还是77,他都讨厌!

  

  吉哥观察了214和77这两个数,发现:

  2+1+4=7

  7+7=72

  77=7
11

  最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!

  什么样的数和7有关呢?

  如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——

  1、整数中某一位是7;

  2、整数的每一位加起来的和是7的整数倍;

  3、这个整数是7的整数倍;

  现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。

思路:

单纯的算个数就很简单。看了大佬博客发现除了麻烦点其他还好。

考虑数学公式。假如我们当前位是第p位,值为i,低位有a和b两个数满足条件。

如果要把a和b合并,首先可算出和im[p]cnt+a+b,cnt就是满足的个数,m是10的几次方。

这样就可以更新和。

再考虑平方,(a+b)^2 = a2+2*a*b+b2

所有就有im[p]sum2+sqr,其中sum是a+b,sqr是a2+b2,就是返回回来的平方和。

还要再加上(i
m[p])^2*cnt,要考虑返回回来的可行解数。

注意取模即可。

代码:

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10; struct Node
{
LL cnt, sum, sqr;
Node()
{
cnt = -1;
sum = sqr = 0;
}
Node(LL _cnt, LL _sum, LL _sqr): cnt(_cnt), sum(_sum), sqr(_sqr){}
}F[20][10][10]; int dig[20];
LL m[20];
LL a, b, n; Node Dfs(int pos, LL sum1, LL sum2, bool lim)
{
if (pos == -1)
{
if (sum1 != 0 && sum2 != 0)
return Node(1, 0, 0);
return Node(0, 0, 0);
}
if (!lim && F[pos][sum1][sum2].cnt != -1)
return F[pos][sum1][sum2];
int up = lim ? dig[pos] : 9;
Node ans(0, 0, 0), tmp;
for (LL i = 0;i <= up;i++)
{
if (i == 7)
continue;
tmp = Dfs(pos-1, (sum1+i)%7, (sum2*10+i)%7, lim && i == up);
ans.cnt = (ans.cnt + tmp.cnt)%MOD;
ans.sum = (ans.sum + (i*m[pos]%MOD*tmp.cnt%MOD + tmp.sum)%MOD)%MOD;
ans.sqr = (ans.sqr + (i*m[pos]%MOD*2%MOD*tmp.sum%MOD+tmp.sqr)%MOD)%MOD;
ans.sqr = (ans.sqr + (i*m[pos]%MOD)*(i*m[pos]%MOD)%MOD*tmp.cnt)%MOD;
}
if (!lim)
F[pos][sum1][sum2] = ans;
return ans;
} LL Solve(LL x)
{
int p = 0;
while(x)
{
dig[p++] = x%10;
x /= 10;
}
return Dfs(p-1, 0, 0, 1).sqr;
} int main()
{
// freopen("test.in", "r", stdin);
m[0] = 1;
for (int i = 1;i < 20;i++)
m[i] = m[i-1]*10;
int t;
scanf("%d", &t);
while(t--)
{
scanf("%lld %lld", &a, &b);
printf("%lld\n", ((Solve(b)-Solve(a-1))%MOD+MOD)%MOD);
} return 0;
}

HDU - 4507 - 吉哥系列故事——恨7不成妻(数位DP,数学)的更多相关文章

  1. 吉哥系列故事——恨7不成妻(数位DP)

    吉哥系列故事——恨7不成妻 http://acm.hdu.edu.cn/showproblem.php?pid=4507 Time Limit: 1000/500 MS (Java/Others)   ...

  2. hdu4507吉哥系列故事——恨7不成妻 (数位dp)

    Problem Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥观察了214和77这两个数,发现: ...

  3. hdu-4507 吉哥系列故事——恨7不成妻 数位DP 状态转移分析/极限取模

    http://acm.hdu.edu.cn/showproblem.php?pid=4507 求[L,R]中不满足任意条件的数的平方和mod 1e9+7. 条件: 1.整数中某一位是7:2.整数的每一 ...

  4. HDU 4507 吉哥系列故事――恨7不成妻(数位DP+结构体)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4507 题目大意:如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关 1.整数中某一位是7: ...

  5. HDU 4507 吉哥系列故事——恨7不成妻

    需要推下平方和的式子..维护个数,和,平方和. #include<iostream> #include<cstdio> #include<cstring> #inc ...

  6. HDU 4507 吉哥系列故事——恨7不成妻 (数位DP)

    题意: 如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关: 1.整数中某一位是7: 2.整数的每一位加起来的和是7的整数倍: 3.这个整数是7的整数倍: 给定一个区间[L,R],问在此区 ...

  7. HDU-4507 吉哥系列故事——恨7不成妻 数位DP

    题意:给定区间[L, R]求区间内与7无关数的平方和.一个数当满足三个规则之一则认为与7有关:1.整数中某一位是7:2.整数的每一位加起来的和是7的整数倍:3.这个整数是7的整数倍: 分析:初看起来确 ...

  8. 【hdu4507】吉哥系列故事——恨7不成妻 数位dp

    题目描述 求 $[L,R]$ 内满足:数位中不包含7.数位之和不是7的倍数.本身不是7的倍数 的所有数的平方和 mod $10^9+7$ . 输入 输入数据的第一行是case数T(1 <= T ...

  9. hdu4507 吉哥系列故事——恨7不成妻[数位DP]

    这题面什么垃圾玩意儿 首先看到问题格式想到数位DP,但是求的是平方和.尝试用数位DP推出. 先尝试拼出和.设$f[len][sum][mod]$表示填到$len$位,已填位置数位和$sum$,数字取余 ...

随机推荐

  1. String和Irreducible Polynomial(2019牛客暑期多校训练营(第七场))

    示例: 输入: 4000010010111011110 输出: 00001001 0111 01111 0 题意:给出一个只含有0和1的字符串,找出一种分割方法,使得每个分割出的字符串都是在该字符串自 ...

  2. 使用mavan构建自定义项目脚手架

    首先抛出一个问题是为什么要构建自定义的脚手架,maven已经为了我么提供了很多脚手架,方便我们快速的创建一个普通java项目或者是web项目,然而在实际开发中,例如银行项目,大部分都是ssm架构,我们 ...

  3. 如何更精准地设置 C# / .NET Core 项目的输出路径?(包括添加和删除各种前后缀)

    原文:如何更精准地设置 C# / .NET Core 项目的输出路径?(包括添加和删除各种前后缀) 我们都知道可以通过在 Visual Studio 中设置输出路径(OutputPath)来更改项目输 ...

  4. MVC比WebForm的优势,为什么使用MVC

    前言 如果你看了最近微软的议程,你会发现他们现在的焦点除了MVC,还是MVC.问题在于为什么微软如此热衷于丢弃传统的APS.NET Webform而转向ASP.NET MVC?本文就主要来讨论这个问题 ...

  5. SVN commit:remains in tree-conflict错误的解决办法

    转自:https://chenjinbo1983.iteye.com/blog/2005123 昨天在提交一个新类包的时候,出错了,重新提交了几次也不行. 错误是:Aborting commit: ‘ ...

  6. 实战OpenGLES--iOS平台使用OpenGLES渲染YUV图片

    上一篇文章 实战FFmpeg--iOS平台使用FFmpeg将视频文件转换为YUV文件 演示了如何将视频文件转换为yuv文件保存,现在要做的是如何将yuv文件利用OpenGLES渲染展示出图像画面.要将 ...

  7. oracle rpad()和lpad()函数

    函数参数:rpad( string1, padded_length, [ pad_string ] ) rpad函数从右边对字符串使用指定的字符进行填充 string 表示:被填充的字符串 padde ...

  8. Vue检测当前是否处于mock模式

    Vue检测当前是否处于mock模式 1.在main.js中声明全局变量: import Vue from 'vue' /* 全局变量 */ var GLOBAL_VARIABLE = { isMock ...

  9. Buffer Latch Timeout的解析

    [问题描述] 我们可能会在数据库的错误日志里,发现这么一条信息: A time-out occurred while waiting for buffer latch -- type 4, bp 00 ...

  10. docker 基本常用操作做

    docker 基本常用操作做(只列举入门常用的命令) 容器生命周期管理 docker run :创建一个新的容器并运行一个命令 -a stdin: 指定标准输入输出内容类型,可选 STDIN/STDO ...