题目

给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p).

分析

与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法。

由于矩阵的求逆麻烦,使用 $A^{km-t} = B(mod \ p)$ 形式的BSGS。

然后就是判断矩阵是否相等,

一种方法是对矩阵进行Hash,

这里为了防止两个不同矩阵的Hash值冲突,使用了两个底数进行Hash。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
typedef unsigned long long ull;
const ull base1 = , base2 = ; struct matrix
{
int r, c;
int mat[][];
ull h1, h2;
matrix(){
memset(mat, , sizeof(mat));
h1 = h2 = ; //记得初始化
} void Hash()
{
for(int i = ;i < r;i++)
for(int j = ;j < c;j++)
h1 = h1 * base1 + mat[i][j], h2 = h2 * base2 + mat[i][j];
}
};
int n, p;
matrix A, B; matrix mul(matrix A, matrix B) //矩阵相乘
{
matrix ret;
ret.r = A.r; ret.c = B.c;
for(int i = ;i < A.r;i++)
for(int k = ;k < A.c;k++)
for(int j = ;j < B.c;j++)
{
ret.mat[i][j] = (ret.mat[i][j] + A.mat[i][k] * B.mat[k][j]) % p;
}
return ret;
} matrix mpow(matrix A, int n)
{
matrix ret;
ret.r = A.r; ret.c = A.c;
for(int i = ;i < ret.r;i++) ret.mat[i][i] = ;
while(n)
{
if(n & ) ret = mul(ret, A);
A = mul(A, A);
n >>= ;
}
return ret;
} map<pair<ull, ull>, int>mp;
int BSGS(matrix A, matrix B, int p)
{
int m=sqrt(p)+;mp.clear();
matrix res= B;
for(int i = ;i < m;i++)
{
res.Hash();
mp[make_pair(res.h1, res.h2)] = i;
res = mul(A, res);
}
matrix mi = mpow(A, m);
matrix tmp = mi;
for(int i = ;i <= m+;i++)
{
tmp.Hash();
pair<ull, ull> pa = make_pair(tmp.h1, tmp.h2);
if(mp.count(pa)) return i*m - mp[pa];
tmp = mul(tmp, mi);
}
} void debug_print(matrix a)
{
for(int i = ;i < a.r;i++)
{
for(int j = ;j < a.c;j++){
printf("%d ", a.mat[i][j]);
}
printf("\n");
}
} int main()
{
//srand(NULL);
scanf("%d%d", &n, &p);
A.r = A.c = n;
for(int i = ;i < n;i++)
for(int j = ;j < n;j++){
int tmp;
scanf("%d", &tmp);
A.mat[i][j] = tmp;
}
B.r = B.c = n;
for(int i = ;i < n;i++)
for(int j = ;j < n;j++){
int tmp;
scanf("%d", &tmp);
B.mat[i][j] = tmp;
} ///debug_print(A);
//debug_print(B);
//debug_print(R); printf("%d\n", BSGS(A, B, p));
}

另一种方法是随机产生一个n*1的矩阵f,若A*f=B*f我们则认为这两个矩阵是相等的。为了让直接map矩阵,还要写比较函数(奇怪的是,答案还受比较函数的影响)。

注意矩阵的左乘和右乘。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
struct matrix
{
int r, c;
int mat[][];
matrix(){
memset(mat, , sizeof(mat));
} bool operator < (const matrix &w) const //???为什么会影响结果呢
{
for (int i=;i< r;i++)
if (mat[i][]<w.mat[i][]) return ;
else if (mat[i][]>w.mat[i][]) return ;
return ;
}
};
int n, p;
matrix A, B, R; //R是随机矩阵 matrix mul(matrix A, matrix B) //矩阵相乘
{
matrix ret;
ret.r = A.r; ret.c = B.c;
for(int i = ;i < A.r;i++)
for(int k = ;k < A.c;k++)
for(int j = ;j < B.c;j++)
{
ret.mat[i][j] = (ret.mat[i][j] + A.mat[i][k] * B.mat[k][j]) % p;
}
return ret;
} matrix mpow(matrix A, int n)
{
matrix ret;
ret.r = A.r; ret.c = A.c;
for(int i = ;i < ret.r;i++) ret.mat[i][i] = ;
while(n)
{
if(n & ) ret = mul(ret, A);
A = mul(A, A);
n >>= ;
}
return ret;
} map<matrix, int>mp;
int BSGS(matrix A, matrix B, matrix R, int p)
{
int m=sqrt(p)+;mp.clear();
matrix res=mul(B, R);
for(int i = ;i < m;i++)
{
mp[res] = i;
res = mul(A, res);
}
matrix mi = mpow(A, m);
matrix tmp = mi;
for(int i = ;i <= m+;i++)
{
matrix t = mul(tmp, R);
if(mp.count(t)) return i*m - mp[t];
tmp = mul(tmp, mi);
}
} void debug_print(matrix a)
{
for(int i = ;i < a.r;i++)
{
for(int j = ;j < a.c;j++){
printf("%d ", a.mat[i][j]);
}
printf("\n");
}
} int main()
{
//srand(NULL);
scanf("%d%d", &n, &p);
A.r = A.c = n;
for(int i = ;i < n;i++)
for(int j = ;j < n;j++){
int tmp;
scanf("%d", &tmp);
A.mat[i][j] = tmp;
}
B.r = B.c = n;
for(int i = ;i < n;i++)
for(int j = ;j < n;j++){
int tmp;
scanf("%d", &tmp);
B.mat[i][j] = tmp;
} R.r = n, R.c = ;
for(int i = ;i < n;i++) R.mat[i][] = rand()%(p-) + p; ///debug_print(A);
//debug_print(B);
//debug_print(R); printf("%d\n", BSGS(A, B, R, p));
}

参考链接:

1. SFN1036 zoj 4128:Matrix BSGS+矩阵乘法

2. GXZlegend【bzoj4128】Matrix 矩阵乘法+Hash+BSGS

bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希的更多相关文章

  1. HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表

    2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...

  2. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  3. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  4. BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  5. ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)

    Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...

  6. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  7. BZOJ 2553 AC自动机+矩阵快速幂 (神题)

    思路: 我们先对所有读进来的T建一个AC自动机 因为走到一个禁忌串就需要回到根 所以呢 搞出来所有的结束点 或一下 fail指针指向的那个点 然后我们就想转移 a[i][j]表示从i节点转移到j节点的 ...

  8. BZOJ 4128 Matrix ——BSGS

    矩阵的BSGS. 只需要哈希一下存起来就可以了. 也并不需要求逆. #include <map> #include <cmath> #include <cstdio> ...

  9. BZOJ 4128 Matrix BSGS+矩阵求逆

    题意:链接 方法: BSGS+矩阵求逆 解析: 这题就是把Ax=B(mod C)的A和B换成了矩阵. 然而别的地方并没有修改. 所以就涉及到矩阵的逆元这个问题. 矩阵的逆元怎么求呢? 先在原矩阵后接一 ...

随机推荐

  1. Docker部署ELK 7.0.1集群之Elasticsearch安装介绍

    elk介绍这里不再赘述,本系列教程多以实战干货为主,关于elk工作原理介绍,详情查看官方文档. 一.环境规划 主机名 IP 角色 节点名 centos01 10.10.0.10 es node-10 ...

  2. Java连接数据库——最基础的方式

    JAVAWEB实现增删查改(图书信息管理)之Util类 Util.java  ↓ package BookSystem.Other; import java.sql.*; import java.ut ...

  3. 3.JVM 垃圾收集器

    Garbage Collect(垃圾回收) 1.1 如何确定一个对象是垃圾? 要想进行垃圾回收,得先知道什么样的对象是垃圾. 1.1.1 引用计数法 对于某个对象而言,只要应用程序中持有该对象的引用, ...

  4. day31——recv工作原理、高大上版解决粘包方式、基于UDP协议的socket通信

    day31 recv工作原理 源码解释: Receive up to buffersize bytes from the socket. 接收来自socket缓冲区的字节数据, For the opt ...

  5. PAT(B) 1060 爱丁顿数(Java:21分)

    题目链接:1060 爱丁顿数 (25 point(s)) 题目描述 英国天文学家爱丁顿很喜欢骑车.据说他为了炫耀自己的骑车功力,还定义了一个"爱丁顿数" E ,即满足有 E 天骑车 ...

  6. 【LEETCODE】39、第561题 Array Partition I

    package y2019.Algorithm.array; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * ...

  7. 3. 键值对RDD

    键值对RDD是Spark中许多操作所需要的常见数据类型.除了在基础RDD类中定义的操作之外,Spark为包含键值对类型的RDD提供了一些专有的操作在PairRDDFunctions专门进行了定义.这些 ...

  8. Java多线程系列——锁的那些事

    引入 Java提供了种类丰富的锁,每种锁因其特性的不同,在适当的场景下能够展现出非常高的效率. 下面先带大家来总体预览一下锁的分类图 java锁的具体实现类 1.乐观锁 VS 悲观锁 乐观锁与悲观锁是 ...

  9. JDK提供的原子类和AbstractQueuedSynchronizer(AQS)

    大致分成: 1.原子更新基本类型 2.原子更新数组 3.原子更新抽象类型 4.原子更新字段 import java.util.concurrent.atomic.AtomicInteger; impo ...

  10. Java线程设计模式(五)

    多线程的设计模式:Future模式.Master-Worker模式,生产消费者模式 public interface Data { String getRequest(); } public clas ...