Hive 主流文件存储格式对比

1、存储文件的压缩比测试

1.1 测试数据
https://github.com/liufengji/Compression_Format_Data

log.txt 大小为18.1 M
1.2 TextFile
  • 创建表,存储数据格式为TextFile

create table log_text (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as textfile ;
  • 向表中加载数据

load data local inpath '/home/hadoop/log.txt' into table log_text ;
  • 查看表的数据量大小

dfs -du -h /user/hive/warehouse/log_text;

+------------------------------------------------+--+
| DFS Output |
+------------------------------------------------+--+
| 18.1 M /user/hive/warehouse/log_text/log.txt |
+------------------------------------------------+--+
1.3 Parquet
  • 创建表,存储数据格式为 parquet

create table log_parquet  (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as parquet;
  • 向表中加载数据

insert into table log_parquet select * from log_text;
  • 查看表的数据量大小

hdfs dfs -du -h /user/hive/warehouse/log_parquet;

+----------------------------------------------------+--+
| DFS Output |
+----------------------------------------------------+--+
| 13.1 M /user/hive/warehouse/log_parquet/000000_0 |
+----------------------------------------------------+--+
1.4 ORC
  • 创建表,存储数据格式为ORC

create table log_orc  (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc ;
  • 向表中加载数据

insert into table log_orc select * from log_text ;
  • 查看表的数据量大小

hdfs dfs -du -h /user/hive/warehouse/log_orc;
+-----------------------------------------------+--+
| DFS Output |
+-----------------------------------------------+--+
| 2.8 M /user/hive/warehouse/log_orc/000000_0 |
+-----------------------------------------------+--+
1.5 存储文件的压缩比总结
ORC >  Parquet >  textFile

2、存储文件的查询速度测试

2.1 TextFile
select count(*) from log_text;
+---------+--+
| _c0 |
+---------+--+
| 100000 |
+---------+--+
1 row selected (16.99 seconds)
2.2 Parquet
select count(*) from log_parquet;
+---------+--+
| _c0 |
+---------+--+
| 100000 |
+---------+--+
1 row selected (17.994 seconds)
2.3 ORC
select count(*) from log_orc;
+---------+--+
| _c0 |
+---------+--+
| 100000 |
+---------+--+
1 row selected (15.943 seconds)
2.4 存储文件的查询速度总结
ORC > TextFile > Parquet

3、存储和压缩结合

3.1 创建一个非压缩的的ORC存储方式表
  • 1、创建一个非压缩的的ORC表

create table log_orc_none (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc tblproperties("orc.compress"="NONE") ;
  • 2、加载数据

insert into table log_orc_none select * from log_text ;
  • 3、查看表的数据量大小

hdfs dfs -du -h /user/hive/warehouse/log_orc_none;
+----------------------------------------------------+--+
| DFS Output |
+----------------------------------------------------+--+
| 7.7 M /user/hive/warehouse/log_orc_none/000000_0 |
+----------------------------------------------------+--+
3.2 创建一个snappy压缩的ORC存储方式表
  • 1、创建一个snappy压缩的的ORC表

create table log_orc_snappy (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
row format delimited fields terminated by '\t'
stored as orc tblproperties("orc.compress"="SNAPPY") ;
  • 2、加载数据

insert into table log_orc_snappy select * from log_text ;
  • 3、查看表的数据量大小

hdfs dfs -du -h /user/hive/warehouse/log_orc_snappy;
+------------------------------------------------------+--+
| DFS Output |
+------------------------------------------------------+--+
| 3.8 M /user/hive/warehouse/log_orc_snappy/000000_0 |
+------------------------------------------------------+--+
3.3 创建一个ZLIB压缩的ORC存储方式表
  • 不指定压缩格式的就是默认的采用ZLIB压缩

    • 可以参考上面创建的 log_orc 表

  • 查看表的数据量大小

hdfs dfs -du -h /user/hive/warehouse/log_orc;
+-----------------------------------------------+--+
| DFS Output |
+-----------------------------------------------+--+
| 2.8 M /user/hive/warehouse/log_orc/000000_0 |
+-----------------------------------------------+--+
3.4 存储方式和压缩总结
  • orc 默认的压缩方式ZLIB比Snappy压缩的还小。

  • 在实际的项目开发当中,hive表的数据存储方式一般选择:orc或parquet

  • 由于snappy的压缩和解压缩 效率都比较高,压缩方式一般选择snappy

hive基础知识五的更多相关文章

  1. 《Programming Hive》读书笔记(两)Hive基础知识

    <Programming Hive>读书笔记(两)Hive基础知识 :第一遍读是浏览.建立知识索引,由于有些知识不一定能用到,知道就好.感兴趣的部分能够多研究. 以后用的时候再具体看.并结 ...

  2. Python基础知识(五)------字典

    Python基础知识(四)------字典 字典 一丶什么是字典 ​ dict关键字 , 以 {} 表示, 以key:value形式保存数据 ,每个逗号分隔 ​ 键: 必须是可哈希,(不可变的数据类型 ...

  3. Hive基础知识梳理

    Hive简介 Hive是什么 Hive是构建在Hadoop之上的数据仓库平台. Hive是一个SQL解析引擎,将SQL转译成MapReduce程序并在Hadoop上运行. Hive是HDFS的一个文件 ...

  4. Android学习之基础知识五—创建自定义控件

    下面是控件和布局的继承关系: 从上面我们看到: 1.所有控件都是直接或间接继承View,所有的布局都是直接或间接继承ViewGroup 2.View是Android中最基本的UI组件,各种组件其实就是 ...

  5. hive基础知识四

    1. hive表的数据压缩 1.1 数据的压缩说明 压缩模式评价 可使用以下三种标准对压缩方式进行评价 1.压缩比:压缩比越高,压缩后文件越小,所以压缩比越高越好 2.压缩时间:越快越好 3.已经压缩 ...

  6. python基础知识五

    数据结构基本上就是---它们可以处理一些数据的结构.或者说,它们是用来存储一组相关数据的. python中有三种内建的数据结构---列表.元祖和字典. 我们将会学习如何使用它们,以及它们如何使编程变得 ...

  7. Hive基础知识

    一.产生背景 1.MapReudce编程繁琐,需要编写大量的代码 2.HDFS中存放的都是文件,在HDFS中没有Scheme的概念,无法用SQL进行快速的查询. 二.Hive的概念 Hive是基于Ha ...

  8. Android学习之基础知识五—编写聊天界面

    第一步:在app/build.grandle添加RecyclerView依赖库 第二步:在activity_main.xml文件中编写主界面:聊天.发送框.发送按钮三个部分 第三步:编写Message ...

  9. Android学习之基础知识五—RecyclerView(滚动控件)

    RecyclerView可以说是增强版的ListView,不仅具有ListVIew的效果,还弥补许多ListView的不足. 一.RecyclerView的基本用法 与百分比布局类似,Recycler ...

随机推荐

  1. linux内核debug的一种方式:procfs

    #include <linux/module.h> #include <linux/compat.h> #include <linux/types.h> #incl ...

  2. MongoDB学习笔记(五)

    MongoDB 查看执行计划 MongoDB 中的 explain() 函数可以帮助我们查看查询相关的信息,这有助于我们快速查找到搜索瓶颈进而解决它,本文我们就来看看 explain() 的一些用法及 ...

  3. Android Studio Analyze APK 一直显示 Parsing Manifest探因及解决

    一.背景 大家都知道,Android Studio开发工具自带了Analyze Apk,可以很方便的分析Apk文件.具体位于菜单build >> Analyze APK...路径下,点击后 ...

  4. golang --os系统包详解

    环境变量 Environ 获取所有环境变量, 返回变量列表 func Environ() []string package main import ( "fmt" "os ...

  5. Flink DataStream 编程入门

    流处理是 Flink 的核心,流处理的数据集用 DataStream 表示.数据流从可以从各种各样的数据源中创建(消息队列.Socket 和 文件等),经过 DataStream 的各种 transf ...

  6. java的三种随机数生成方式

    随机数的产生在一些代码中很常用,也是我们必须要掌握的.而java中产生随机数的方法主要有三种: 第一种:new Random() 第二种:Math.random() 第三种:currentTimeMi ...

  7. Form之action提交不刷新不跳转

    <div class="file-box"> <form action="/File/fileUpLoad" id="form1&q ...

  8. Spring @Import注解源码解析

    简介 Spring 3.0之前,创建Bean可以通过xml配置文件与扫描特定包下面的类来将类注入到Spring IOC容器内.而在Spring 3.0之后提供了JavaConfig的方式,也就是将IO ...

  9. Bootstrap初始化过程源码分析--netty客户端的启动

    Bootstrap初始化过程 netty的客户端引导类是Bootstrap,我们看一下spark的rpc中客户端部分对Bootstrap的初始化过程 TransportClientFactory.cr ...

  10. canvas与svg整理与区别

    1.canvas画布(位图) 2.绘制矢量图 1.不要在style中给canvas设置宽高 会有位移差 2. //获取元素 var c=document.getElementById("c& ...