441. Arranging Coins

Easy

You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.

Given n, find the total number of full staircase rows that can be formed.

n is a non-negative integer and fits within the range of a 32-bit signed integer.

Example 1:

n = 5

The coins can form the following rows:
¤
¤ ¤
¤ ¤ Because the 3rd row is incomplete, we return 2.

Example 2:

n = 8

The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤ Because the 4th row is incomplete, we return 3.
package leetcode.easy;

public class ArrangingCoins {
public int arrangeCoins(int n) {
int i = 0;
while (true) {
if (i <= n) {
n = n - i;
i++;
} else {
return i - 1;
}
}
} @org.junit.Test
public void test() {
System.out.println(arrangeCoins(5));
System.out.println(arrangeCoins(8));
}
}

LeetCode_441. Arranging Coins的更多相关文章

  1. 【leetcode】441. Arranging Coins

    problem 441. Arranging Coins solution1: class Solution { public: int arrangeCoins(int n) { ; ; while ...

  2. Leetcode之二分法专题-441. 排列硬币(Arranging Coins)

    Leetcode之二分法专题-441. 排列硬币(Arranging Coins) 你总共有 n 枚硬币,你需要将它们摆成一个阶梯形状,第 k 行就必须正好有 k 枚硬币. 给定一个数字 n,找出可形 ...

  3. [LeetCode] Arranging Coins 排列硬币

    You have a total of n coins that you want to form in a staircase shape, where every k-th row must ha ...

  4. LeetCode 441 Arranging Coins

    Problem: You have a total of n coins that you want to form in a staircase shape, where every k-th ro ...

  5. [Swift]LeetCode441. 排列硬币 | Arranging Coins

    You have a total of n coins that you want to form in a staircase shape, where every k-th row must ha ...

  6. [LeetCode] 441. Arranging Coins 排列硬币

    You have a total of n coins that you want to form in a staircase shape, where every k-th row must ha ...

  7. C#LeetCode刷题之#441-排列硬币(Arranging Coins)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3995 访问. 你总共有 n 枚硬币,你需要将它们摆成一个阶梯形状 ...

  8. 【LeetCode】441. Arranging Coins 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 模拟计算 二分查找 数学公式 日期 题目地址:htt ...

  9. LeetCode "Arranging Coins"

    A simple math.. take care of data overflow though. class Solution { public: int arrangeCoins(int n) ...

随机推荐

  1. pip的安装、以及使用方法。

    pip类似RedHat里面的yum,安装Python包非常方便.本节详细介绍pip的安装.以及使用方法. 1.pip下载安装 1.1 pip下载   1 # wget "https://py ...

  2. python的pandas库读取csv

    首先建立test.csv原始数据,内容如下 时间,地点 一月,北京 二月,上海 三月,广东 四月,深圳 五月,河南 六月,郑州 七月,新密 八月,大连 九月,盘锦 十月,沈阳 十一月,武汉 十二月,南 ...

  3. 软帝学院:java多线程知识点分享

    1.进程和线程: 进程:正在进行的程序.每一个进程执行都有一个执行顺序,该顺序是一个执行路径,或者叫一个控制单元. 线程:进程内部的一条执行路径或者一个控制单元. 两者的区别: 一个进程至少有一个线程 ...

  4. npm run dev 报错 iview TypeError [ERR_INVALID_CALLBACK]: Callback must be a function

    运行npm run dev报这个错 然后找到 D:\text\vue\iview-admin\build\webpack.dev.config.js打开 将这一行代码: fs.write(fd, bu ...

  5. solidworks 学习 (一)

    螺丝刀建模

  6. WinDbg扩展

    WinDbg的扩展,也可以叫插件.它用于实现针对特定调试目标的调试功能,用于扩展某一方面的调试功能.扩展的实现是通过扩展模块(DLL)实现的.Windbg本身已经包含了很多扩展命令,这些扩展为这Win ...

  7. PowerDesigner 创建表的时候 没有自增长Id的设置项

    今天早上同事创建表的时候,在那个界面没有自增长Id的选项,当时我也纳闷,软件肯定都是一样的,设置的步骤都一样(有些配置好的 我就没改过 然后就忘了还改过些什么步骤了),结果还是没有那个选项 百度了一下 ...

  8. nodejs+nvm历史版本

    官网:http://nodejs.org/dist/ 淘宝镜像:https://npm.taobao.org/mirrors/node/ nvm历史版本:https://github.com/core ...

  9. PKUWC2019 Round 2 没去祭

    因为今年有两场 PKUWC,所以叫 PKUWC2019 Round 2. 因为一些沙雕原因,今年去不了了. Day 0 一如既往,没有集训就去上数学课,今天讲几何变换,一如既往的只会说"少女 ...

  10. Brexit Gym - 101490C

    题目链接:Brexit vector的使用(vector存边),巧用queue,相当于Bfs /* */ # include <iostream> # include <cstdio ...