题目链接:

pid=4786" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=4786

Problem Description
  Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:

  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?

(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )

 
Input
  The first line of the input contains an integer T, the number of test cases.

  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).

  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
 
Output
  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
Source

题意:

N个顶点,M条边。每条边或为白色或为黑色( 1 or 0 )。

问有没实用是斐波那契数的数目的白色边构成一棵生成树。

PS:

事实上说是并查集更靠谱一点的酱紫!

首先推断整个图是否是连通的,若不连通则直接输出No。

接下来首先仅讨论白边。不要黑边,看最多能增加多少条白边。使得不存在环。

这样我们得到了能增加白边的最大值max。(就是全部生成树里白边数量的最大值)。

接下来同理仅讨论黑边,这样我们能够得到可增加白边的最小值min。(也能够觉得是全部生成树中白边的最小值)。

然后我们仅仅要推断这两个值之间是否存在斐波那契数即可了。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn = 100017;
struct node
{
int u, v;
int c;
} a[maxn];
int f[maxn], Fib[maxn];
int n, m;
int findd(int x)
{
return x==f[x] ? x : f[x]=findd(f[x]);
}
int kruskal(int sign)
{
int k = 0;
//sort(a,a+m,cmp);
for(int i = 0; i <= n; i++)
{
f[i] = i;
}
for(int i = 1; i <= m; i++)
{
if(a[i].c != sign)
{
int f1 = findd(a[i].u);
int f2 = findd(a[i].v);
if(f1 != f2)
{
f[f1] = f2;
k++;
}
}
}
return k;
}
void init()
{
Fib[0] = 1, Fib[1] = 2;
for(int i = 2; ; i++)
{
Fib[i] = Fib[i-1]+Fib[i-2];
if(Fib[i] > maxn)
break;
}
}
int main()
{
int t;
int cas = 0;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= m; i++)
{
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].c);
}
int ans = kruskal(2);
if(ans != n-1)//不能形成树
{
printf("Case #%d: No\n",++cas);
continue;
}
int maxx = kruskal(0);
int minn = n-1-kruskal(1);
int flag = 0;
for(int i = 0; ; i++)
{
if(Fib[i] >=minn && Fib[i]<=maxx)
{
flag = 1;
break;
}
if(Fib[i] > maxx)
{
break;
}
}
if(flag)
{
printf("Case #%d: Yes\n",++cas);
}
else
{
printf("Case #%d: No\n",++cas);
}
}
return 0;
}

HDU 4786(最小生成树 kruskal)的更多相关文章

  1. hdu 2988(最小生成树 kruskal算法)

    Dark roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. hdu 4786 最小生成树与最大生成树

    /* 题意 :有一些边权值为1和0,判断是否存在一个生成树使得他的总权值为一个斐波那契数. 解法:建立一个最小生成树向里面加权值为1的边替换为0的边,保证原来的联通.因为权值为1,可直接求出最大生成树 ...

  3. HDU 4786 最小生成树变形 kruscal(13成都区域赛F)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  4. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  5. HDU 1233(最小生成树)

    HDU 1233(最小生成树 模板) #include <iostream> #include <algorithm> #include <cstdio> usin ...

  6. 最小生成树——Kruskal与Prim算法

    最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...

  7. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  8. HDU 1102 最小生成树裸题,kruskal,prim

    1.HDU  1102  Constructing Roads    最小生成树 2.总结: 题意:修路,裸题 (1)kruskal //kruskal #include<iostream> ...

  9. 最小生成树 kruskal hdu 5723 Abandoned country

    题目链接:hdu 5723 Abandoned country 题目大意:N个点,M条边:先构成一棵最小生成树,然后这个最小生成树上求任意两点之间的路径长度和,并求期望 /************** ...

随机推荐

  1. TWaver可视化编辑器的前世今生(四)电力 云计算 数据中心

    插播一则广告(长期有效) TWaver需要在武汉招JavaScript工程师若干 要求:对前端技术(JavasScript.HTML.CSS),对可视化技术(Canvas.WebGL)有浓厚的兴趣基础 ...

  2. for、while循环

    for循环 # for 循环后面可以对Iterable或者Iterator进行遍历 # "abc"和[1,2,3]为可迭代对象,range(4)为迭代器 for i in &quo ...

  3. 蓝牙bluez学习(1) Stack Architecture

    Bluez支持的features Core Specification 4.2 (GAP, L2CAP, RFCOMM, SDP, GATT) Classic Bluetooth (BR/EDR) B ...

  4. css 实践记录

    子绝父相 https://developer.mozilla.org/zh-CN/docs/Web/CSS/position 利用子绝父相来实现一种比较老的居中方式:1.明确宽度:2.定位左边到容器的 ...

  5. Web安全解决方案

    什么是 .NET Framework 安全性? .NET Framework 提供了用户和代码安全模型,允许对用户和代码可以执行的操作进行限制.要对基于角色的安全性和代码访问安全性进行编程,可以从 S ...

  6. Java学习之for循环打印菱形练习

    for循环语句是Java程序设计中非常有用的循环语句.一个for循环可以用来重复执行某条语句,直到某个条件得到满足.在Java 5新增的加强的foreach语法,也非常有用. 1. for语句 for ...

  7. PS学习笔记(02)

    书籍推荐: <设计之下>这本APP设计书字里行间都透露出了真实,作者能将其工作流程和方法分享出来,实在值得尊敬.通过这本书全面了解了真实的设计工作是怎么做的,今后可以用到自己的工作中.赞! ...

  8. 按Esc按钮关闭layer弹窗

    //按Esc关闭弹出框 $(document).ready(function () { }).keydown( function (e) { if (e.which === 27) {  layer. ...

  9. 2016 Multi-University Training Contest 3 solutions BY 绍兴一中

    1001 Sqrt Bo 由于有\(5\)次的这个限制,所以尝试寻找分界点. 很容易发现是\(2^{32}\),所以我们先比较输入的数字是否比这个大,然后再暴力开根. 复杂度是\(O(\log\log ...

  10. msp430入门编程44

    msp430中C语言的人机交互--菜单交互方式