畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 41873    Accepted Submission(s): 15470

Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

 
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
 
Sample Output
2
-1
 
简单最短路。floyd和dijkstra解决。注意有坑:两点之间可能有多条路,需要保存最短的。
 
dijkstra:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define N 205
#define M 1005
#define INF 999999999
int city[N][N];
int dist[M];
int n; void Dijkstra(int v0)
{
int S[N];
for(int i=; i<n; i++)
{
dist[i]=city[v0][i];
S[i]=;
}
dist[v0]=;
S[v0]=;
for(int i=; i<n; i++)
{
int mindist=INF;
int flag=v0;
for(int j=; j<n; j++)
if((!S[j])&&dist[j]<mindist)
{
flag=j;
mindist=dist[j];
}
S[flag]=;
for(int j=; j<n; j++)
if((!S[j])&&city[flag][j]<INF)
{
if(dist[j]>dist[flag]+city[flag][j])
dist[j]=dist[flag]+city[flag][j];
}
}
} int main()
{
int m,a,b,x;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=; i<n; i++)
for(int j=; j<n; j++)
{
if(i==j)
city[i][j]=;
else
city[i][j]=INF;
} for(int i=; i<m; i++)
{
scanf("%d%d%d",&a,&b,&x);
if(x<city[a][b])
{
city[a][b]=x;
city[b][a]=x;
}
}
scanf("%d%d",&a,&b); Dijkstra(a);
if(dist[b]==INF)
printf("-1\n");
else
printf("%d\n",dist[b]);
}
return ;
}

floyd:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; #define N 205
#define M 1005
#define INF 999999999
int city[N][N];
int n; void floyd()
{
for(int k=; k<n; k++)
for(int i=; i<n; i++)
for(int j=; j<n; j++)
{
if(city[i][j]>city[i][k]+city[k][j])
city[i][j]=city[i][k]+city[k][j];
}
}
int main()
{
int m,a,b,x;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=; i<n; i++)
for(int j=; j<n; j++)
{
if(i==j)
city[i][j]=;
else
city[i][j]=INF;
} for(int i=; i<m; i++)
{
scanf("%d%d%d",&a,&b,&x);
if(x<city[a][b])
{
city[a][b]=x;
city[b][a]=x;
}
}
scanf("%d%d",&a,&b);
floyd();
if(city[a][b]==INF)
printf("-1\n");
else
printf("%d\n",city[a][b]);
}
return ;
}

HDU_1874_畅通工程续_最短路问题的更多相关文章

  1. HDU 1874 畅通工程续-- Dijkstra算法详解 单源点最短路问题

    参考 此题Dijkstra算法,一次AC.这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上:  迪科斯彻算法分解(优酷) problem link -> HDU 1874 ...

  2. 最短路问题--Floyd 畅通工程续

    畅通工程续 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很 ...

  3. 畅通工程续——E

    E. 畅通工程续 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让 ...

  4. HDU 1874 畅通工程续(最短路/spfa Dijkstra 邻接矩阵+邻接表)

    题目链接: 传送门 畅通工程续 Time Limit: 1000MS     Memory Limit: 65536K Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路. ...

  5. ACM: HDU 1874 畅通工程续-Dijkstra算法

    HDU 1874 畅通工程续 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Desc ...

  6. hdu 1874 畅通工程续

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过 ...

  7. hdu 1874 畅通工程续 Dijkstra

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 题目分析:输入起点和终点,顶点的个数,已连通的边. 输出起点到终点的最短路径,若不存在,输出-1 ...

  8. hdoj 1874 畅通工程续【dijkstra算法or spfa算法】

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  9. 畅通工程续 HDOJ--1874

    畅通工程续 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submiss ...

随机推荐

  1. MYSQL入库常用PHP函数

    addslashes   addslashes() 函数在指定的预定义字符前添加反斜杠.这些字符是单引号(').双引号(").反斜线(\)与NUL(NULL字符).   stripslash ...

  2. mysql导出整个数据库

    mysql导出整个数据库 mysqldump -hhostname -uusername -ppassword databasename > backupfile.sql mysqldump - ...

  3. 黑马day16 aptana插件的安装

    aptana: eclipse或者myeclipse中的javaScript,html,css的代码提示功能非常差...因此我们选择了这个框架. aptana的安装步骤: 1.须要下载aptana的插 ...

  4. 【Codevs 2630】宝库通道

    http://codevs.cn/problem/2630/ Solution 预处理f[i][j],代表第j列前i行的代价 枚举上下界,然后做最大子段和,g[i]代表选到第i列的代价, g[k]=( ...

  5. 列表渲染v-for

    v-for我们用v-for指令根据一组数据的选项列表进行渲染.v-for指令需要以item in items形式的特殊语法,items是源数据数组并且item是数组元素迭代的别名. demo: < ...

  6. 15.extjs tabPanel的用法

    转自:https://blog.csdn.net/mezhaha/article/details/78878894 本文导读:TabPanel继承于Ext.Panel,Ext.TabPanel就是有选 ...

  7. Thinkphp模板标签if和eq的区别和比较

    在TP模板语言中.if和eq都可以用于变量的比较.总结以下几点: 1.两个变量的比较: <if condition=”$item.group_id eq $one.group_id”> & ...

  8. hdu 2209 翻纸牌游戏【贪心】

    本来是冲着搜索去的--其实可以贪心 因为能改变第一位的只有第一位和第二位,然后改完之后后面的同理,也就是说只要贪心的推一遍就可以 但是注意要在翻第一个和不翻第一个之间取个min #include< ...

  9. P3573 [POI2014]RAJ-Rally

    传送门 很妙的思路 首先这是一个DAG,于是我们先在原图和反图上各做一遍,分别求出\(diss_i\)和\(dist_i\)表示从\(i\)点出发的最短路和以\(i\)为终点的最短路 我们考虑把点分为 ...

  10. [Swift]Array(数组)扩展

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...