233 Matrix

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 749    Accepted Submission(s): 453

Problem Description
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means
a0,1 = 233,a0,2 = 2333,a0,3 = 23333...) Besides, in 233 matrix, we got ai,j = ai-1,j +ai,j-1( i,j ≠ 0). Now you have known a1,0,a2,0,...,an,0, could you tell
me an,m in the 233 matrix?

 
Input
There are multiple test cases. Please process till EOF.



For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a1,0,a2,0,...,an,0(0 ≤ ai,0 < 231).
 
Output
For each case, output an,m mod 10000007.
 
Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
 
Sample Output
234
2799
72937
Hint

思路:

第一列元素为:

0

a1

a2

a3

a4

转化为:

23

a1

a2

a3

a4

3

则第二列为:

23*10+3

23*10+3+a1

23*10+3+a1+a2

23*10+3+a1+a2+a3

23*10+3+a1+a2+a3+a4

3

依据前后两列的递推关系,有等式可得矩阵A的元素为:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMTcyMTQ0MA==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

#include"iostream"
#include"stdio.h"
#include"string.h"
#include"algorithm"
#include"queue"
#include"vector"
using namespace std;
#define N 15
#define LL __int64
const int mod=10000007;
int n;
int b[N];
struct Mat
{
LL mat[N][N];
}a,ans;
Mat operator*(Mat a,Mat b)
{
int i,j,k;
Mat c;
memset(c.mat,0,sizeof(c.mat));
for(i=0; i<=n+1; i++)
{
for(j=0; j<=n+1; j++)
{
c.mat[i][j]=0;
for(k=0; k<=n+1; k++)
{
if(a.mat[i][k]&&b.mat[k][j])
{
c.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
c.mat[i][j]%=mod;
}
}
}
}
return c;
}
void mult(int k)
{
int i;
memset(ans.mat,0,sizeof(ans.mat));
for(i=0;i<=n+1;i++)
ans.mat[i][i]=1;
while(k)
{
if(k&1)
ans=ans*a;
k>>=1;
a=a*a;
}
}
void inti()
{
int i,j;
b[0]=23;
b[n+1]=3;
for(i=1; i<=n; i++)
scanf("%d",&b[i]);
memset(a.mat,0,sizeof(a.mat));
for(i=0; i<=n; i++)
{
a.mat[i][0]=10;
a.mat[i][n+1]=1;
}
a.mat[n+1][n+1]=1;
for(i=1; i<n+1; i++)
{
for(j=1; j<=i; j++)
{
a.mat[i][j]=1;
}
}
}
int main()
{
int i,m;
while(scanf("%d%d",&n,&m)!=-1)
{
inti();
mult(m);
LL s=0;
for(i=0;i<=n+1;i++)
s=(s+(ans.mat[n][i]*b[i])%mod)%mod;
printf("%I64d\n",s);
}
return 0;
}

hdu 5015 233 Matrix (矩阵高速幂)的更多相关文章

  1. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  2. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  3. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  4. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  5. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  6. HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂

    先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html http://www.cppblog.com/acronix/archive/20 ...

  7. HDU - 5015 233 Matrix(杨辉三角/前缀+矩阵快速幂)

    233 Matrix In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23 ...

  8. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  9. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

随机推荐

  1. 【译】x86程序员手册39-10.3切换到保护模式

    10.3 Switching to Protected Mode  切换到保护模式 Setting the PE bit of the MSW in CR0 causes the 80386 to b ...

  2. python学习日记-01

    一. 熟悉 在正式介绍python之前,了解下面两个基本操作对后面的学习是有好处的: (1)基本的输入输出 可以在Python中使用+.-.*./直接进行四则运算. >>> 1+3* ...

  3. windows ubuntu bcdeditor

    双系统. 先装windows,后装ubuntu12.04 为了避免grub引导,所以安装bcdeditor. 平时使用没有什么不适,可是每次linux升级内核以后,grub列表可能就会消失,自然是不能 ...

  4. day21-3 类的组合

    目录 类的组合 组合的应用 类的组合 组合就是一个类的对象具备某一个属性,该属性的值是指向另外一个类的对象 组合的好处:解决类与类之间代码冗余的问题 组合的应用 需求:假如我们需要给学生增添课程属性, ...

  5. 17Web服务器端控件

    Web服务器端控件 Web服务器端控件 ASP.Net提供了两类服务器端控件:Html服务器端控件和Web服务器端控件.由于Web服务器端控件功能更强大,和Windows应用程序的控件使用方法类似,容 ...

  6. filezilla server FTP 安装报错 "could not load TLS network. Aborting start of administration interface"

    filezilla server FTP 安装报错   "could not load TLS network. Aborting start of administration inter ...

  7. 浅谈FFT(快速博立叶变换)&学习笔记

    0XFF---FFT是啥? FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform),它根据离散傅氏变换的奇.偶.虚.实等 特性,对离散傅立叶变换的算法进行改进 ...

  8. Go:面向"对象"

    一.封装 封装的实现步骤: 将结构体.字段的首字母小写(不能被导出): 给结构体所在的包提供一个工厂模式的函数,首字母大写.类似一个构造函数: 提供一个首字母大写的方法,由于获取结构体属性的值. 二. ...

  9. centos 简单用户管理

    一.配置文件 /etc/passwd:存放用户信息,以“:”分割成7个部分 1.账号名称,用来对应UID: 2.早期密码存放位置,后来密码改存/etc/shadow中,以“x”代替: 3.UID,使用 ...

  10. linux下硬盘分区、格式化以及文件管理系统

    1.添加虚拟硬盘 (1)点击编辑虚拟机位置,然后点击添加   (2)点击添加硬盘 (3)点击下一步 (4)创建新虚拟磁盘并点击下一步 (5)指定磁盘容量并且点击下一步 (6)点击完成 2.系统分区 当 ...