解题思路:给定素数p,定义p内封闭的加法和乘法运算(运算封闭的定义:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的。),使得等式$(m+n)^p = m^p + n^p(0 \leq m,n<p) $恒成立。
由费马小定理可得$(m+n)^p\equiv(m+n)(mod\;p)$,则$m^p + n^p \equiv(m+n)(mod\;p)$。
∴在模p的意义下,$ (m+n)^p = m^p + n^p(0 \leq m,n<p)$恒成立,且加法运算与乘法运算封闭。
因为在p是素数的情况下,对任意的整数x都有$x^p\equiv x(mod\;p)$,即有$ m^p\equiv m(mod\;p),n^p\equiv n(mod\;p)$,所以乘法运算满足$m^p \cdot n^p \equiv m\cdot n(mod\;p)$。
AC代码:
 #include<bits/stdc++.h>
using namespace std;
int t,p;
int main(){
while(cin>>t){
while(t--){
cin>>p;
for(int i=;i<p;++i)
for(int j=;j<p;++j)
printf("%d%c",(i+j)%p,j==p-?'\n':' ');
for(int i=;i<p;++i)
for(int j=;j<p;++j)
printf("%d%c",i*j%p,j==p-?'\n':' ');
}
}
return ;
}

题解报告:hdu 6440 Dream(费马小定理+构造)的更多相关文章

  1. HDU6440 Dream(费马小定理+构造) -2018CCPC网络赛1003

    题意: 给定素数p,定义p内封闭的加法和乘法,使得$(m+n)^p=m^p+n^p$ 思路: 由费马小定理,p是素数,$a^{p-1}\equiv 1(mod\;p)$ 所以$(m+n)^{p}\eq ...

  2. HDU - 6440(费马小定理)

    链接:HDU - 6440 题意:重新定义加法和乘法,使得 (m+n)^p = m^p + n^p 成立,p是素数.,且satisfied that there exists an integer q ...

  3. hdu6440 Dream 2018CCPC网络赛C 费马小定理+构造

    题目传送门 题目大意: 给定一个素数p,让你重载加法运算和乘法运算,使(m+n)p=mp+np,并且 存在一个小于p的q,使集合{qk|0<k<p,k∈Z} 等于集合{k|0<k&l ...

  4. hdu 4704 Sum 费马小定理

    题目链接 求2^n%mod的值, n<=10^100000. 费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p)  然后可以推出来a^k % p = a^(k%(p-1) ...

  5. hdu6440 Dream(费马小定理)

    保证 当  n^p=n(mod p) 是成立 只要保证n*m=n*m(mod p); #include<bits/stdc++.h> using namespace std; int ma ...

  6. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  7. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  8. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  9. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

随机推荐

  1. Facebook内部高效工作指南

    文章来源: TopDigital http://news.ittime.com.cn/usershow/main?userid=2826 [IT时代网.IT时代周刊编者按]每一个人工作中都会遇到力不从 ...

  2. 每天一个JavaScript实例-apply和call的使用方法

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  3. js编程精解--笔记

    看这本书的目的是为了更好的使用mongodb,所以只看js编程语言基础,不看浏览器和画布. 需要看1-11章,共160页 第一章 值.类型和运算符 第二章 程序结构 第三章 函数 第四章 数据结构:对 ...

  4. Axure Base 07 元件使用思路的补充

    我们曾经对axure线框图基本元件进行过说明,现结合这我对这些元件的使用习惯,对部分元件的使用,再做一些补充. 1. 图片:可以编辑悬停.按下时候显示不同的图片,做图片的一些特殊效果. 2. 文本(l ...

  5. 如何去除Office Excel的密码保护?

    企图更改Excel文件内容,然而却弹出如下提示: 根据提示,我尝试解除保护表,却要求输入密码: 这就尴尬了=_=密码不是我设定的 问了度娘,找到了解决方案 将Excel文件扩展名更改为rar, 使用压 ...

  6. LOJ#139. 树链剖分

    LOJ#139. 树链剖分 题目描述 这是一道模板题. 给定一棵$n$个节点的树,初始时该树的根为 1 号节点,每个节点有一个给定的权值.下面依次进行 m 个操作,操作分为如下五种类型: 换根:将一个 ...

  7. hihoCoder 1582 Territorial Dispute 【凸包】(ACM-ICPC国际大学生程序设计竞赛北京赛区(2017)网络赛)

    #1582 : Territorial Dispute 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In 2333, the C++ Empire and the Ja ...

  8. spring cloud - config 属性自动刷新

    启动config-server,启动成功后就不需要在管了; 在config-client做些修改: 在使用的controller或service的类上加上一个注解@RefreshScope 在pom中 ...

  9. HDU4289 Control —— 最小割、最大流 、拆点

    题目链接:https://vjudge.net/problem/HDU-4289 Control Time Limit: 2000/1000 MS (Java/Others)    Memory Li ...

  10. 一步一步学Silverlight 2系列(18):综合实例之RSS阅读器

    一步一步学Silverlight 2系列(18):综合实例之RSS阅读器   概述 Silverlight 2 Beta 1版本发布了,无论从Runtime还是Tools都给我们带来了很多的惊喜,如支 ...