[HAOI2011]Problem b 题解
题目大意:
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y)=k。
思路:
设f(k)为当1≤x≤n,1≤y≤m,且n≤m,使gcd(x,y)=k的数对(x,y)的对数,g(k)为当1≤x≤n,1≤y≤m,且n≤m,使k|gcd(x,y)的数对(x,y)的对数。则,莫比乌斯反演,得
。
和
会有连续的一段相同且相同的为一定连续的一段,可证最多有2√n和2√m段,分块处理,对于每个询问可O(√n)解决。
代码:
#include<cstdio>
#include<iostream>
using namespace std;
const int M=;
int k,prime[M],mu[M],s[M];
bool flag[M]; int read()
{
int x=; char ch=getchar();
while (ch<'' || ch>'') ch=getchar();
while (ch>='' && ch<='') x=(x<<)+(x<<)+ch-,ch=getchar();
return x;
} void getmu(int n)
{
mu[]=;
int i,j,k,cnt=;
for (i=;i<n;++i)
{
if (!flag[i]) prime[++cnt]=i,mu[i]=-;
for (j=;j<=cnt && (k=i*prime[j])<n;++j)
{
flag[k]=;
if (!(i%prime[j])) { mu[k]=; break; }
mu[k]=-mu[i];
}
}
for (i=;i<n;++i) s[i]=s[i-]+mu[i];
} int sum(int n,int m)
{
if (n>m) swap(n,m);
n=n/k,m=m/k;
int i,j,ans=;
for (i=;i<=n;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans=ans+(s[j]-s[i-])*(n/i)*(m/i);
}
return ans;
} int main()
{
getmu(M);
for (int T=read();T;--T)
{
int a=read(),b=read(),c=read(),d=read();k=read();
printf("%d\n",sum(b,d)-sum(a-,d)-sum(c-,b)+sum(a-,c-));
}
return ;
}
[HAOI2011]Problem b 题解的更多相关文章
- BZOJ2298:[HAOI2011]problem a——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2298 https://www.luogu.org/problemnew/show/P2519 一次 ...
- BZOJ2301:[HAOI2011]Problem b——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 https://www.luogu.org/problemnew/show/P2522 对于给 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- bzoj 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...
- HAOI2011 problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1047 Solved: 434[Submit][ ...
- BZOJ 2298: [HAOI2011]problem a 动态规划
2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...
- 【BZOJ2302】[HAOI2011]Problem C(动态规划)
[BZOJ2302][HAOI2011]Problem C(动态规划) 题面 BZOJ 洛谷 题解 首先如果\(m=0\)即没有特殊限制的话,那么就和这道题目基本上是一样的. 然而这题也有属于这题的性 ...
- [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...
- 【BZOJ2298】[HAOI2011]problem a DP
[BZOJ2298][HAOI2011]problem a Description 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相 ...
随机推荐
- 洛谷 P2048 [NOI2010]超级钢琴 || Fantasy
https://www.luogu.org/problemnew/show/P2048 http://www.lydsy.com/JudgeOnline/problem.php?id=2006 首先计 ...
- 暴力/进制转换 Codeforces Round #308 (Div. 2) C. Vanya and Scales
题目传送门 /* 题意:问是否能用质量为w^0,w^1,...,w^100的砝码各1个称出重量m,砝码放左边或在右边 暴力/进制转换:假设可以称出,用w进制表示,每一位是0,1,w-1.w-1表示砝码 ...
- jmeter(九)分布式测试
Jmeter 是java 应用,对于CPU和内存的消耗比较大,因此,当需要模拟数以千计的并发用户时,使用单台机器模拟所有的并发用户就有些力不从心,甚至会引起JAVA内存溢出错误.为了让jmeter工具 ...
- 202 Happy Number 快乐数
写一个算法来判断一个数是不是“快乐数”.一个数是不是快乐是这么定义的:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,或是无限循环但始终变不到 1.如 ...
- Matrix Transformation codechef 数学题
https://www.codechef.com/problems/MTRNSFRM 我只能说codechef的题好劲爆,这题居然是easy的题,太可怕了.而且还有一点就是codechef的题解很难看 ...
- 支付宝-API接口解析-转账到银行
支付宝-API接口解析-转账到银行 扫码转账 测试地址 解析内容: alipays://platformapi/startapp?appId=09999988&actionType=toCar ...
- H1B工作签证·绿卡:美国留学的两个关键步骤
月20日在留美学生家长群聚会上的发言稿一.H1B签证系美国最主要的工作签证类别,发放给美国公司雇佣的外国籍有专业技能的员工,属于非移民签证的一种.持有H1B签证者可以在美国工作三年,然后可以再延长三年 ...
- [转] NTFS Permission issue with TAKEOWN & ICACLS
(转自:NTFS Permission issue with TAKEOWN & ICACLS - SAUGATA 原文日期:2013.11.19) Most of us using TA ...
- scrapy增加爬取效率
增加并发: 默认scrapy开启的并发线程为32个,可以适当进行增加.在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100. 降低日志级别 ...
- Django 外键ForeignKey中的on_delete
当你在Django中删除了一个有着外键关联的数据时,比如一个作者和他名下的所有的书的信息,书的外键是作者(一个作者可有好多本书),当你把作者的信息从数据库中删除时,Django提供了一下几个参数来对作 ...