斯特林(Stirling)公式 求大数阶乘的位数
我们知道整数n的位数的计算方法为:log10(n)+1
n!=10^m
故n!的位数为 m = log10(n!)+1
lgN!=lg1+lg2+lg3+lg4+lg5+....................+lgN;
但是当N很大的时候,我们可以通过数学公式进行优化:(即Stirling公式)
N!=sqrt(2*pi*N)*(N/e)^N;(pi=3.1415926=acos(-1.0),e=exp(1))
lgN!=(lg(2*pi)+lgN)/2+N*(lgN-lge);
斯特林公式可以用来估算某数的大小结合lg可以估算某数的位数,或者可以估算某数的阶乘是另一个数的倍数。
例题
https://www.nowcoder.net/acm/contest/75/A
题意 求解n的阶乘八进制下的位数
n!=8^res n!=e^m
res=log8(n!) m=loge(n!)
log8(n!)= loge(n!)/loge(8) res = m/loge(8)换底公式
m=loge(2*pi*n)/2+n*loge(n/e)
AC代码
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <string>
#include <queue>
#include <map>
#include <vector>
using namespace std;
const int maxn = 1e6+;
const int inf = 0x3f3f3f3f;
const double e = exp();
const double pi = acos(-1.0);
const double epx = 1e-;
typedef long long ll;
int main()
{
ll t;
scanf("%lld",&t);
while(t--){
ll n;
scanf("%lld",&n);
if(n==||n==){
puts("");
continue;
}
double res = (log(*pi*n)/2.0+n*log(n/e))/log()+;
printf("%lld\n",(ll)res);
}
return ;
}
斯特林(Stirling)公式 求大数阶乘的位数的更多相关文章
- 斯特林公式 ——Stirling公式(取N阶乘近似值)(转)
斯特灵公式是一条用来取n阶乘近似值的数学公式.一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特灵公式十分好用.从图中可以看出,即使在n很小的时候,斯特灵公式的取值已经十分准确. 公式为: ...
- HDU 1018.Big Number-Stirling(斯特林)公式 取N阶乘近似值
最近一堆题目要补,一直咸鱼,补了一堆水题都没必要写题解.备忘一下这个公式. Stirling公式的意义在于:当n足够大时,n!计算起来十分困难,虽然有很多关于n!的等式,但并不能很好地对阶乘结果进行估 ...
- BZOJ 3000(Big Number-Stirling公式求n!近似值)
3000: Big Number Time Limit: 2 Sec Memory Limit: 128 MB Submit: 220 Solved: 62 [Submit][Status] De ...
- N的阶乘的长度 V2(斯特林近似) 求 某个大数的阶乘的位数 .
求某个大数的阶乘的位数 . 得到的值 需要 +1 得到真正的位数 斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义.在数学分析中,大多都是利用Г函数.级数和含参变量的积分等 ...
- HDU 1018 大数(求N!的位数/相加)
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- [POJ1423]Stirling公式的应用
Stirling公式: n!约等于sqrt(2*pi*n)*(n/e)^n 另外,e约等于2.71828182845409523... 试了一下发现math库里面并不能像pi一样直接调e但是发现挺好记 ...
- n阶乘,位数,log函数,斯特林公式
一.log函数 头文件: #include <math.h> 使用: 引入#include<cmath> 以e为底:log(exp(n)) 以10为底:log10(n) 以m为 ...
- HDU 1133 Buy the Ticket (数学、大数阶乘)
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- java实现第四届蓝桥杯公式求值
公式求值 输入n, m, k,输出图1所示的公式的值.其中C_n^m是组合数,表示在n个人的集合中选出m个人组成一个集合的方案数.组合数的计算公式如图2所示. 输入的第一行包含一个整数n:第二行包含一 ...
随机推荐
- Oracle用户角色权限相关视图
常用相关视图概述 DBA_SYS_PRIVS: 查询某个用户所拥有的系统权限 USER_SYS_PRIVS: 当前用户所拥有的系统权限 SESSION_PRIVS: 当前用户所拥有的全部权限 ROLE ...
- AJPFX总结final、finally、finallize的区别
final.finally.finallize有何区别? final表示一个修饰符,如果用它来修饰一个类,则该类是不能继承的:如果用它来修饰一个变量,则该变量一旦赋值之后就不能再修改:如果用它来 ...
- div里面整齐的字体样式,所有浏览器都兼容
<div id="wenda"> <div class="table_wd" > <div class="tr1&quo ...
- 学习笔记 第八章 使用CSS美化列表
第8章 使用CSS美化列表 8.1 列表的基本结构 在HTML中,列表结构可以分为两种基本类型:有序列表和无序列表.使用标签如下: <ul>...</ul>:标识无序列表: ...
- Dragger2解析(一)
依赖注入(DI-Dependency Injection) 什么是依赖注入 这是一种设计思想,一个面向对象的编程法则. DI能够让开发者写出低耦合代码,更加优良的程序. 更容易测试,代码健壮性更强. ...
- 从GridView中直接导出数据到Excel文件 处理导出乱码 类型“GridView”的控件“XXXX”必须放在具有 runat=server 的窗体标记内。”的异常
导出到Excel方法: <span style="color: rgb(0, 0, 255);">public</span> <span style= ...
- .NET Core MVC Web最最最基础的框架搭建
1. 使用VS创建.NET Core MVC Web项目 创建完成就是酱紫的了 2. 用NuGet把这些全部都安装了 Install-Package Microsoft.EntityFramework ...
- Linux Mint 教程
Linux Mint 安装文本编辑软件 sudo apt-get install gedit linux操作系统上面开发程序, 光有了gcc 是不行的它还需要一个 build-essential软 ...
- CAD参数绘制直径标注(com接口)
主要用到函数说明: _DMxDrawX::DrawDimDiametric 绘制一个直径标注.详细说明如下: 参数 说明 DOUBLE dChordPointX 在被标注的曲线上的第一个点X值 DOU ...
- php 阿里云短信验证码
阿里云短信服务:https://dysms.console.aliyun.com 1.准备 1.1.创建签名.模板 1.2.创建.使用阿里云秘钥 地址:https://usercenter.conso ...