题意:给定三个正整数N、L和R,

统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。

输出答案对10^6+3取模的结果。

对于100%的数据,1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。

题意:WYZ作业

L和R本身没有意义,等价于[1,R-L+1],共有R-L+1种取值方法

显然是一个阶梯状的东西

但我们直接算需要枚举长度,通分又很麻烦

考虑使用R-L填充长度不足N的区间,这样问题就转化为:

求长度为N,元素大小都在1到R-L之间的单调不降序列的数量

需要注意的是如果全部由R-L填充,则这个方案不合法,所以需要-1

ANS=C(n+R-L+1,n)-1

因为n+R-L较大,模数又是较小的质数,所以可以使用lucas定理

C(n,m)=C(n div mo,m div mo)*C(n mod mo,m mod mo) mod mo

 const mo=;
var fac,exf:array[..mo]of int64;
cas,i,v,n,l,r:longint;
ans:int64; function c(n,m:longint):int64;
begin
if n<m then exit();
if (n<mo)and(m<mo) then exit(fac[n]*exf[m] mod mo*exf[n-m] mod mo);
exit(c(n mod mo,m mod mo)*c(n div mo,m div mo) mod mo);
end; begin
assign(input,'bzoj4403.in'); reset(input);
assign(output,'bzoj4403.out'); rewrite(output);
read(cas);
exf[]:=; exf[]:=; fac[]:=;
for i:= to mo do exf[i]:=exf[mo mod i]*(mo-mo div i) mod mo;
for i:= to mo do exf[i]:=exf[i-]*exf[i] mod mo;
for i:= to mo do fac[i]:=fac[i-]*i mod mo;
for v:= to cas do
begin
read(n,l,r);
ans:=c(n+r-l+,n)-;
ans:=(ans+mo) mod mo;
writeln(ans);
end;
close(input);
close(output);
end.

【BZOJ4403】序列统计(Lucas定理,组合计数)的更多相关文章

  1. 【BZOJ4403】序列统计 Lucas定理

    [BZOJ4403]序列统计 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第 ...

  2. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  3. BZOJ4403 序列统计—Lucas你好

    绝对是全网写的最详细的一篇题解  题目:序列统计 代码难度:简单 思维难度:提高+-省选 讲下题面:给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案 ...

  4. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  5. bzoj 4403 序列统计 卢卡斯定理

    4403:序列统计 Time Limit: 3 Sec  Memory Limit: 128 MB Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调 ...

  6. bzoj4403: 序列统计

    我们很容易发现答案是C(R-L+N+1,N)-1 然后用一下lucas定理就行了 #include <iostream> #include <cstdio> #include ...

  7. BZOJ4403: 序列统计【lucas定理+组合数学】

    Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组 ...

  8. 2018.09.09 bzoj4403: 序列统计(Lucas定理)

    传送门 感觉单调不降序列什么的不好做啊. 于是我们序列中下标为i的元素的值加上i,这样就构成了一个单调递增的序列. 问题就变成了: 求出构造长度分别为1 ~ n且每个元素的值在l+1 ~ r+n之间的 ...

  9. bzoj4403 序列统计——组合数学

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403 一开始想了个 O(n) 的做法,不行啊... O(n)想法是这样的:先考虑递推,设 f ...

随机推荐

  1. Jquery操作常用表单元素

    由于对前端的东西不是很熟练,导致jquery操作表单的东西总是忘记,每次用都要查一下,效率低下,记录下来,以便下次使用. CheckBox checkbox改变事件 $('#IsAllSearch') ...

  2. 解决okHttp使用https抛出stream was reset: PROTOCOL_ERROR的问题

    昨天在做Android接口调用的时候,api接口是https的,用okhttp抛出: okhttp3.internal.http2.StreamResetException: stream was r ...

  3. iOS 画环形图

    由于新项目的的需求,需要画环形图,由于以前都没接触过这一类(我是菜鸟),去cocochina山找到了一个案例,个人觉得还可以,分享一下 github 地址https://github.com/zhou ...

  4. Dragger2解析(一)

    依赖注入(DI-Dependency Injection) 什么是依赖注入 这是一种设计思想,一个面向对象的编程法则. DI能够让开发者写出低耦合代码,更加优良的程序. 更容易测试,代码健壮性更强. ...

  5. Python学习 Day 8 继承 多态 Type isinstance dir __slots__

    继承和多态 在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类.父类或超类(Base clas ...

  6. java中字节和字符的转换操作

    package com.ywx.io; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputSt ...

  7. OC 实现一个TODO宏

    实现一个TODO宏 转载http://blog.sunnyxx.com/2015/03/01/todo-macro/ 实现一个能产生warning的TODO宏,用于在代码里做备忘,效果: 下面一步步来 ...

  8. echarts 外观效果修改

    <!DOCTYPE html> <html> <head> <title></title> <link rel="style ...

  9. Sass的的使用一

    sass -v 检测是否安装 Sass 成功 gem update sass 更新 Sass gem uninstall sass 删除/卸载 Sass 的编译有多种方法: 1.命令编译2.GUI工具 ...

  10. [转] 随机数是骗人的,.Net、Java、C为我作证

    (转自:随机数是骗人的,.Net.Java.C为我作证 - 杨中科   原文日期:2014.05.12) 几乎所有编程语言中都提供了"生成一个随机数"的方法,也就是调用这个方法会生 ...