CF585E:Present for Vitalik the Philatelist
n<=500000个2<=Ai<=1e7的数,求这样选数的方案数:先从其中挑出一个gcd不为1的集合,然后再选一个不属于该集合,且与该集合内任意一个数互质的数。
好的统计题。
其实就是要对每个数求和他互质的,gcd不为1的集合数,容斥一下,求出所有gcd不为1的集合数A然后减去所有他的质因子对这个A的贡献。(这里的A是CF的题解的B)
那先看看所有gcd不为1的集合数怎么求。比如说2的倍数有cnt_2个,那能凑出2^cnt_2-1个集合,然后3的倍数有cnt_3个,能凑出2^cnt_3-1个集合,但有一些gcd为6的集合被算了两次,就要减去2^cnt_6-1,等等这不是莫比乌斯函数嘛,所以现在只要统计1~1e7中每个数作为多少个数的因数即可。那要把n个数都进行分解,这里可以在筛莫比乌斯的时候记一下每个数的最小质因子就可以n*logMax的时间内完成所有数的分解。由于miu_i=0的cnt_i对答案没贡献,所以每个数分解完的质因子不用去考虑那些次数大于1的部分,比如12=2*2*3直接看2和3即可。把不重复质数分解出来后,在1e7内一个数最多有8个不同质因子,所以枚举一下所有这些质因子能凑出的数即可计算miu_i不为0的cnt_i。
然后某个数的质因子对A的贡献呢?同理耶!
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stdlib.h>
//#include<iostream>
using namespace std; int n;
#define maxn 500011
#define maxm 10000011
const int mod=1e9+;
int a[maxn]; int xiao[maxm],miu[maxm],prime[maxm],lp;bool notprime[maxm];
void pre(int n)
{
lp=;notprime[]=;
for (int i=;i<=n;i++)
{
if (!notprime[i]) {prime[++lp]=i;miu[i]=-;}
for (int j=;j<=lp && 1ll*prime[j]*i<=n;j++)
{
notprime[prime[j]*i]=;
xiao[prime[j]*i]=prime[j];
if (!(i%prime[j])) {miu[i*prime[j]]=;break;}
else miu[i*prime[j]]=-miu[i];
}
}
} int cnt[maxm],two[maxn];
int frac[],lf;
int main()
{
scanf("%d",&n);int Max=;
for (int i=;i<=n;i++) scanf("%d",&a[i]),Max=max(Max,a[i]);
two[]=;for (int i=;i<=n;i++) two[i]=(two[i-]<<)%mod;
pre(Max);
for (int i=;i<=n;i++)
{
int tmp=a[i];lf=;
while (xiao[tmp])
{
int now=xiao[tmp];
while (xiao[tmp]==now) tmp/=xiao[tmp];
frac[++lf]=now;
}
if (!lf || frac[lf]!=tmp) frac[++lf]=tmp;
for (int i=;i<(<<lf);i++)
{
int now=;
for (int j=;j<=lf;j++) if (i&(<<(j-))) now*=frac[j];
cnt[now]++;
}
}
int A=;
for (int i=;i<=Max;i++) A=(A-miu[i]*(two[cnt[i]]-))%mod; int ans=;
for (int i=;i<=n;i++)
{
int tmp=a[i];lf=;
while (xiao[tmp])
{
int now=xiao[tmp];
while (xiao[tmp]==now) tmp/=xiao[tmp];
frac[++lf]=now;
}
if (!lf || frac[lf]!=tmp) frac[++lf]=tmp;
int B=;
for (int i=;i<(<<lf);i++)
{
int now=;
for (int j=;j<=lf;j++) if (i&(<<(j-))) now*=frac[j];
B=(B-miu[now]*(two[cnt[now]]-))%mod;
}
ans=((ans+A)%mod-B)%mod;
}
printf("%d\n",(ans+mod)%mod);
return ;
}
CF585E:Present for Vitalik the Philatelist的更多相关文章
- 「CF585E」 Present for Vitalik the Philatelist
「CF585E」 Present for Vitalik the Philatelist 传送门 我们可以考虑枚举 \(S'=S\cup\{x\}\),那么显然有 \(\gcd\{S'\}=1\). ...
- CF585E. Present for Vitalik the Philatelist [容斥原理 !]
CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...
- 【CodeForces】585 E. Present for Vitalik the Philatelist
[题目]E. Present for Vitalik the Philatelist [题意]给定n个数字,定义一种合法方案为选择一个数字Aa,选择另外一些数字Abi,令g=gcd(Ab1...Abx ...
- 【CF 585E】 E. Present for Vitalik the Philatelist
E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...
- CF 585 E Present for Vitalik the Philatelist
CF 585 E Present for Vitalik the Philatelist 我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ ...
- Codeforces 585E. Present for Vitalik the Philatelist(容斥)
好题!学习了好多 写法①: 先求出gcd不为1的集合的数量,显然我们可以从大到小枚举计算每种gcd的方案(其实也是容斥),或者可以直接枚举gcd然后容斥(比如最大值是6就用2^cnt[2]-1+3^c ...
- Codeforces 585E - Present for Vitalik the Philatelist(简单莫反+狄利克雷前缀和)
Codeforces 题目传送门 & 洛谷题目传送门 一道不算太难的 D1E 罢--虽然我不会做/kk u1s1 似乎这场 Div1 挺水的?F 就是个 AC 自动机板子还被评到了 3k2-- ...
- E. Present for Vitalik the Philatelist 反演+容斥
题意:给n个数\(a_i\),求选一个数x和一个集合S不重合,gcd(S)!=1,gcd(S,x)==1的方案数. 题解:\(ans=\sum_{i=2}^nf_ig_i\),\(f_i\)是数组中和 ...
- CF585E-Present for Vitalik the Philatelist【莫比乌斯反演,狄利克雷前缀和】
正题 题目链接:https://www.luogu.com.cn/problem/CF585E 题目大意 给出一个大小为\(n\)的可重集\(T\),求有多少个它的非空子集\(S\)和元素\(x\)满 ...
随机推荐
- 452 Minimum Number of Arrows to Burst Balloons 用最少数量的箭引爆气球
在二维空间中有许多球形的气球.对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标.由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了.开始坐标总是小于结束坐标.平面 ...
- 203 Remove Linked List Elements 删除链表中的元素
删除链表中等于给定值 val 的所有元素.示例给定: 1 --> 2 --> 6 --> 3 --> 4 --> 5 --> 6, val = 6返回: 1 --& ...
- 1268 和为K的组合 Meet in mid二分思路
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1268&judgeId=193772 给出n = 20个数,问其是 ...
- Oracle用户角色权限相关视图
常用相关视图概述 DBA_SYS_PRIVS: 查询某个用户所拥有的系统权限 USER_SYS_PRIVS: 当前用户所拥有的系统权限 SESSION_PRIVS: 当前用户所拥有的全部权限 ROLE ...
- java封装的优点
在面向对象程式设计方法中,封装(英语:Encapsulation)是指一种将抽象性函式接口的实现细节部份包装.隐藏起来的方法. 封装可以被认为是一个保护屏障,防止该类的代码和数据被外部类定义的代码随机 ...
- javascript中闭包与作用域的理解
很多js的框架与插件编写都用到了闭包,所以,阅读和掌握闭包很有必要.最近学习vue框架时,经常会猜想很多功能的native js实现,很多都应用到了闭包,闭包除了目前已知的一些特性,如:可以保持局部变 ...
- VUE学习,is 特性,转载来源:https://segmentfault.com/q/1010000007205176/
- Bmob使用心得
1.在 Project 的 build.gradle 文件中添加 Bmob的maven仓库地址,示例如下:(注意文字说明部分): allprojects { repositories { jcente ...
- json两层解析
public class Demo { public static void main(String[] args) { try { // 创建连接 服务器的连接地址 URL url = new UR ...
- vuex的应用和解决的实际问题
这是vuex的语法结构内容 简单的理解vuex: new Vue({ // state data () { return { count: 0 } }, // view template: ` < ...