n<=500000个2<=Ai<=1e7的数,求这样选数的方案数:先从其中挑出一个gcd不为1的集合,然后再选一个不属于该集合,且与该集合内任意一个数互质的数。

好的统计题。

其实就是要对每个数求和他互质的,gcd不为1的集合数,容斥一下,求出所有gcd不为1的集合数A然后减去所有他的质因子对这个A的贡献。(这里的A是CF的题解的B)

那先看看所有gcd不为1的集合数怎么求。比如说2的倍数有cnt_2个,那能凑出2^cnt_2-1个集合,然后3的倍数有cnt_3个,能凑出2^cnt_3-1个集合,但有一些gcd为6的集合被算了两次,就要减去2^cnt_6-1,等等这不是莫比乌斯函数嘛,所以现在只要统计1~1e7中每个数作为多少个数的因数即可。那要把n个数都进行分解,这里可以在筛莫比乌斯的时候记一下每个数的最小质因子就可以n*logMax的时间内完成所有数的分解。由于miu_i=0的cnt_i对答案没贡献,所以每个数分解完的质因子不用去考虑那些次数大于1的部分,比如12=2*2*3直接看2和3即可。把不重复质数分解出来后,在1e7内一个数最多有8个不同质因子,所以枚举一下所有这些质因子能凑出的数即可计算miu_i不为0的cnt_i。

然后某个数的质因子对A的贡献呢?同理耶!

 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<stdlib.h>
//#include<iostream>
using namespace std; int n;
#define maxn 500011
#define maxm 10000011
const int mod=1e9+;
int a[maxn]; int xiao[maxm],miu[maxm],prime[maxm],lp;bool notprime[maxm];
void pre(int n)
{
lp=;notprime[]=;
for (int i=;i<=n;i++)
{
if (!notprime[i]) {prime[++lp]=i;miu[i]=-;}
for (int j=;j<=lp && 1ll*prime[j]*i<=n;j++)
{
notprime[prime[j]*i]=;
xiao[prime[j]*i]=prime[j];
if (!(i%prime[j])) {miu[i*prime[j]]=;break;}
else miu[i*prime[j]]=-miu[i];
}
}
} int cnt[maxm],two[maxn];
int frac[],lf;
int main()
{
scanf("%d",&n);int Max=;
for (int i=;i<=n;i++) scanf("%d",&a[i]),Max=max(Max,a[i]);
two[]=;for (int i=;i<=n;i++) two[i]=(two[i-]<<)%mod;
pre(Max);
for (int i=;i<=n;i++)
{
int tmp=a[i];lf=;
while (xiao[tmp])
{
int now=xiao[tmp];
while (xiao[tmp]==now) tmp/=xiao[tmp];
frac[++lf]=now;
}
if (!lf || frac[lf]!=tmp) frac[++lf]=tmp;
for (int i=;i<(<<lf);i++)
{
int now=;
for (int j=;j<=lf;j++) if (i&(<<(j-))) now*=frac[j];
cnt[now]++;
}
}
int A=;
for (int i=;i<=Max;i++) A=(A-miu[i]*(two[cnt[i]]-))%mod; int ans=;
for (int i=;i<=n;i++)
{
int tmp=a[i];lf=;
while (xiao[tmp])
{
int now=xiao[tmp];
while (xiao[tmp]==now) tmp/=xiao[tmp];
frac[++lf]=now;
}
if (!lf || frac[lf]!=tmp) frac[++lf]=tmp;
int B=;
for (int i=;i<(<<lf);i++)
{
int now=;
for (int j=;j<=lf;j++) if (i&(<<(j-))) now*=frac[j];
B=(B-miu[now]*(two[cnt[now]]-))%mod;
}
ans=((ans+A)%mod-B)%mod;
}
printf("%d\n",(ans+mod)%mod);
return ;
}

CF585E:Present for Vitalik the Philatelist的更多相关文章

  1. 「CF585E」 Present for Vitalik the Philatelist

    「CF585E」 Present for Vitalik the Philatelist 传送门 我们可以考虑枚举 \(S'=S\cup\{x\}\),那么显然有 \(\gcd\{S'\}=1\). ...

  2. CF585E. Present for Vitalik the Philatelist [容斥原理 !]

    CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...

  3. 【CodeForces】585 E. Present for Vitalik the Philatelist

    [题目]E. Present for Vitalik the Philatelist [题意]给定n个数字,定义一种合法方案为选择一个数字Aa,选择另外一些数字Abi,令g=gcd(Ab1...Abx ...

  4. 【CF 585E】 E. Present for Vitalik the Philatelist

    E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...

  5. CF 585 E Present for Vitalik the Philatelist

    CF 585 E Present for Vitalik the Philatelist 我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ ...

  6. Codeforces 585E. Present for Vitalik the Philatelist(容斥)

    好题!学习了好多 写法①: 先求出gcd不为1的集合的数量,显然我们可以从大到小枚举计算每种gcd的方案(其实也是容斥),或者可以直接枚举gcd然后容斥(比如最大值是6就用2^cnt[2]-1+3^c ...

  7. Codeforces 585E - Present for Vitalik the Philatelist(简单莫反+狄利克雷前缀和)

    Codeforces 题目传送门 & 洛谷题目传送门 一道不算太难的 D1E 罢--虽然我不会做/kk u1s1 似乎这场 Div1 挺水的?F 就是个 AC 自动机板子还被评到了 3k2-- ...

  8. E. Present for Vitalik the Philatelist 反演+容斥

    题意:给n个数\(a_i\),求选一个数x和一个集合S不重合,gcd(S)!=1,gcd(S,x)==1的方案数. 题解:\(ans=\sum_{i=2}^nf_ig_i\),\(f_i\)是数组中和 ...

  9. CF585E-Present for Vitalik the Philatelist【莫比乌斯反演,狄利克雷前缀和】

    正题 题目链接:https://www.luogu.com.cn/problem/CF585E 题目大意 给出一个大小为\(n\)的可重集\(T\),求有多少个它的非空子集\(S\)和元素\(x\)满 ...

随机推荐

  1. paint之Graphics

    在paint方法里面,这个Graphics类就相当于一支画笔.而且就画在那个component里面,比如frame. 看例子代码: import java.awt.*; public class Te ...

  2. spark yarn cluster模式下任务提交和计算流程分析

    spark可以运行在standalone,yarn,mesos等多种模式下,当前我们用的最普遍的是yarn模式,在yarn模式下又分为client和cluster.本文接下来将分析yarn clust ...

  3. Node.js(二)常用的系统模块

    http模块 第一章已经介绍了 node.js 的模块都可以传一个回调函数  回调函数支持两个参数  error , data let fs = require('fs'); fs.readFile( ...

  4. linux下redis安装访问

    下载编译安装 wget http://download.redis.io/releases/redis-3.0.1.tar.gz tar xvf redis-3.0.1.tar.gz mv redis ...

  5. vuex使用之state访问状态对象

    引入vuex1.利用npm包管理工具,进行安装 vuex.在控制命令行中输入下边的命令就可以了. npm install vuex --save 需要注意的是这里一定要加上 –save,因为你这个包我 ...

  6. Windows bat 设置代理

    转自tt-0411 @echo off cls color 0A Echo The program is running... Echo Setting the ip and dns... netsh ...

  7. 如何选安卓android|linux系统开发板,简化学习难度,缩短开发进程

    平台一:iTOP-4412精英版 系统支持:Android 4.0.3系统  / Android 4.4系统 / Linux + Qt系统 / Ubuntu12.04系统 开发板特点:Cortex-A ...

  8. [bzoj4816][Sdoi2017]数字表格 (反演+逆元)

    (真不想做莫比乌斯了) 首先根据题意写出式子 ∏(i=1~n)∏(j=1~m)f[gcd(i,j)] 很明显的f可以预处理出来,解决 根据套路分析,我们可以先枚举gcd(i,j)==d ∏(d=1~n ...

  9. Asp.Net MVC中Controller、Action、View是如何激活调用的

    上篇我们介绍了MVC的路由,知道在注册路由的时候会创建一个MvcHandler将其和Url规则一起放入到了RouteCollection中,之后请求通过UrlRoutingModule,根据当前的UR ...

  10. js 判断访问终端类型

    // 判断访问终端类型 var browser = { versions: function() { var u = navigator.userAgent, app = navigator.appV ...