GridSearchCV
    GridSearchCV的名字其实可以拆分为两部分,GridSearch和CV,即网格搜索和交叉验证。 
这两个概念都比较好理解,网格搜索,搜索的是参数,即在指定的参数范围内,按步长依次调整参数,利用调整的参数训练学习器,从所有的参数中找到在验证集上精度最高的参数,这其实是一个循环和比较的过程。 
GridSearchCV可以保证在指定的参数范围内找到精度最高的参数,但是这也是网格搜索的缺陷所在,它要求遍历所有可能参数的组合,在面对大数据集和多参数的情况下,非常耗时。这也是我通常不会使用GridSearchCV的原因,一般会采用后一种RandomizedSearchCV随机参数搜索的方法。
交叉验证的概念也很简单

· 将训练数据集划分为K份,K一般为10
· 依次取其中一份为验证集,其余为训练集训练分类器,测试分类器在验证集上的精度 
· 取K次实验的平均精度为该分类器的平均精度

网格搜索就是利用交叉验证的形式比较每一个参数下训练器的精度的,但是交叉验证也要求大量的计算资源,加重了网格搜索的搜索时间

接下来以阿里IJCAI广告推荐数据集与XGBoostClassifier分类器为例,用代码的形式说明sklearn中GridSearchCV的使用方法

import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.grid_search import GridSearchCV

#导入训练数据
traindata = pd.read_csv("/traindata_4_3.txt",sep = ',')
traindata = traindata.set_index('instance_id')
trainlabel = traindata['is_trade']
del traindata['is_trade']
print(traindata.shape,trainlabel.shape)

#分类器使用 xgboost
clf1 = xgb.XGBClassifier()

#设定网格搜索的xgboost参数搜索范围,值搜索XGBoost的主要6个参数
param_dist = {
'n_estimators':range(80,200,4),
'max_depth':range(2,15,1),
'learning_rate':np.linspace(0.01,2,20),
'subsample':np.linspace(0.7,0.9,20),
'colsample_bytree':np.linspace(0.5,0.98,10),
'min_child_weight':range(1,9,1)
}

#GridSearchCV参数说明,clf1设置训练的学习器
#param_dist字典类型,放入参数搜索范围
#scoring = 'neg_log_loss',精度评价方式设定为“neg_log_loss“
#n_iter=300,训练300次,数值越大,获得的参数精度越大,但是搜索时间越长
#n_jobs = -1,使用所有的CPU进行训练,默认为1,使用1个CPU
grid = GridSearchCV(clf1,param_dist,cv = 3,scoring = 'neg_log_loss',n_iter=300,n_jobs = -1)

#在训练集上训练
grid.fit(traindata.values,np.ravel(trainlabel.values))
#返回最优的训练器
best_estimator = grid.best_estimator_
print(best_estimator)
#输出最优训练器的精度
print(grid.best_score_)
这里关于网格搜索的几个参数再说明一下,评分参数“scoring“,需要根据实际的评价标准设定,阿里的IJCAI的标准是’neg_log_loss’,所以这里设定的是’neg_log_loss’,sklearn中备选的评价标准有一下:
在一些情况下,sklearn中没有现成的评价函数,sklearn是允许我们自己的定义的,但需要注意格式,接下来给个例子

import numpy as np
from sklearn.metrics import make_scorer

def logloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1, act)*sp.log(sp.subtract(1, pred)))
    ll = ll * -1.0/len(act)
    return ll

#这里的greater_is_better参数决定了自定义的评价指标是越大越好还是越小越好
loss = make_scorer(logloss, greater_is_better=False)
score = make_scorer(logloss, greater_is_better=True)
定义好以后,再将其代入GridSearchCV函数就好

这里再贴一下常用的集成学习算法比较重要的需要调参的参数,供大家参考

RandomizedSearchCV
   RandomizedSearchCV的使用方法其实是和GridSearchCV一致的,但它以随机在参数空间中采样的方式代替了GridSearchCV对于参数的网格搜索,在对于有连续变量的参数时,RandomizedSearchCV会将其当作一个分布进行采样这是网格搜索做不到的,它的搜索能力取决于设定的n_iter参数,同样的给出代码

import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.grid_search import RandomizedSearchCV

#导入训练数据
traindata = pd.read_csv("/traindata.txt",sep = ',')
traindata = traindata.set_index('instance_id')
trainlabel = traindata['is_trade']
del traindata['is_trade']
print(traindata.shape,trainlabel.shape)

#分类器使用 xgboost
clf1 = xgb.XGBClassifier()

#设定搜索的xgboost参数搜索范围,值搜索XGBoost的主要6个参数
param_dist = {
'n_estimators':range(80,200,4),
'max_depth':range(2,15,1),
'learning_rate':np.linspace(0.01,2,20),
'subsample':np.linspace(0.7,0.9,20),
'colsample_bytree':np.linspace(0.5,0.98,10),
'min_child_weight':range(1,9,1)
}

#RandomizedSearchCV参数说明,clf1设置训练的学习器
#param_dist字典类型,放入参数搜索范围
#scoring = 'neg_log_loss',精度评价方式设定为“neg_log_loss“
#n_iter=300,训练300次,数值越大,获得的参数精度越大,但是搜索时间越长
#n_jobs = -1,使用所有的CPU进行训练,默认为1,使用1个CPU
grid = RandomizedSearchCV(clf1,param_dist,cv = 3,scoring = 'neg_log_loss',n_iter=300,n_jobs = -1)

#在训练集上训练
grid.fit(traindata.values,np.ravel(trainlabel.values))
#返回最优的训练器
best_estimator = grid.best_estimator_
print(best_estimator)
#输出最优训练器的精度
print(grid.best_score_)
不过建议还是使用随机的搜索。
---------------------
作者:juezhanangle
来源:CSDN
原文:https://blog.csdn.net/juezhanangle/article/details/80051256
版权声明:本文为博主原创文章,转载请附上博文链接!

GridSearchCV 与 RandomizedSearchCV 调参的更多相关文章

  1. GridSearchCV和RandomizedSearchCV调参

    1 GridSearchCV实际上可以看做是for循环输入一组参数后再比较哪种情况下最优. 使用GirdSearchCV模板 # Use scikit-learn to grid search the ...

  2. GridsearchCV调参

    在利用gridseachcv进行调参时,其中关于scoring可以填的参数在SKlearn中没有写清楚,就自己找了下,具体如下: parameters = {'eps':[0.3,0.4,0.5,0. ...

  3. 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明

    GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...

  4. python 机器学习中模型评估和调参

    在做数据处理时,需要用到不同的手法,如特征标准化,主成分分析,等等会重复用到某些参数,sklearn中提供了管道,可以一次性的解决该问题 先展示先通常的做法 import pandas as pd f ...

  5. scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...

  6. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  7. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  8. 调参必备---GridSearch网格搜索

    什么是Grid Search 网格搜索? Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.其原理就像是在数组里找最 ...

  9. LightGBM 调参方法(具体操作)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

随机推荐

  1. mysql sakila 执行失败

    1.下载 https://dev.mysql.com/doc/index-other.html 2.解压 3.将解压的文件放入某个位置,必须tmp下面 4.登录mysql 进行source处理 mys ...

  2. java修改linux文件

    package vedio.test; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.Fil ...

  3. HTML5、javascript写的craps游戏

    1. [代码][HTML]代码   <!DOCTYPE HTML><html><head><meta charset="utf-8"> ...

  4. poj-1655 Balancing Act(树的重心+树形dp)

    题目链接: Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11845   Accepted: 4 ...

  5. 小程序-demo:小程序示例

    ylbtech-小程序-demo:小程序示例     1.返回顶部 0. 1.app.js const openIdUrl = require('./config').openIdUrl App({ ...

  6. HDU 5944 Fxx and string (暴力)

    题意:给定一个字符串,问有多少个三元组满足 i, j, k组成一个等比数列,并且s[i] = 'y', s[j] = 'r', s[k] = 'x',且j/i ,j/k中至少一个是整数. 析:直接暴力 ...

  7. Word Cloud (词云) - Matlab

    今天要总结的是 Word Cloud 最后一个部分了,用 Matlab 来创建 word cloud.Matlab R2018b 已经提供 wordcloud 函数可以直接生成词云了. >> ...

  8. 我的ubuntu连vi都没有??那在命令行怎么编辑文件??

    今天弄了个docker下的ubuntu官方镜像,想在镜像里做一点实验,免得把自己的环境写得乱七八糟. 把代码文件mount进去之后,开始编译,但是镜像太干净了,什么工具都没有,于是先装cmake ap ...

  9. SpringBoot使用MongoDB

    一.什么是MongoDB MongoDB是一个基于分布式文件存储的数据库,由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于关系数据库和非关系数据库之间的 ...

  10. 洛谷P2384 最短路(dijkstra解法)

    题目背景 狗哥做烂了最短路,突然机智的考了Bosh一道,没想到把Bosh考住了...你能帮Bosh解决吗? 他会给你100000000000000000000000000000000000%10金币w ...