POJ 1737 经典DP
问题:求含有n个点的连通图的个数。
解:
考虑DP,$f(n)$表示n个点,每个点都和点1相连,且n个点互相连通的图的个数。
(蓝字非常重要,这个条件有效地避免了重复计算)
$g(n)$表示n个点,每个点都和点1相连,且不是n个点互相连通的图的个数。
$S(n)$表示n个点的图的个数。
显然,有:$f(n) = S(n)-g(n)$
$S(n) = 2^{n(n-1)/2}$
而且有(关键):$g(n) = \sum_{i=1}^{n-1}{C_{n-1}^{i-1} * f(i) * S(n-i)}$
从除了1之外的n-1个点中选出i-1个点,让这i个点互相连通,而剩下的n-i个点和这i个点没有边相连,互相之间随意连接。
当然,博主并不想写高精度
#include <iostream>
#include <cstring>
#include <algorithm> #define LL long long
#define N 61 using namespace std; LL f[N],g[N];
LL C[N][N];
const int n=; LL S(int x){
if(x==) return ;
return (1LL<<( (x*(x-)) /));
} int main(){
f[]=; g[]=;
C[][]=;
for(int i=;i<=n;i++){
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=C[i-][j-]+C[i-][j];
}
for(int i=;i<=n;i++){
g[i]=;
for(int j=;j<i;j++)
g[i] = g[i] + (C[i-][j-]*f[j]*S(i-j));
f[i]=S(i)-g[i];
}
int x;
while(cin>>x,x) cout<<f[x]<<endl;
return ;
}
接下来是多校联盟中有关于本题的拓展:
问题:求左侧n个点,右侧m个点的联通二分图个数
解:参照上面的解法。
$f(i,j)$表示左面i个点右面j个点,每个点都和左面的点1相连,且n个点互相连通的图的个数。
$g(i,j)$表示左面i个点右面j个点,每个点都和左面的点1相连,且n个点不是互相连通的图的个数。
$S(i,j)$定义类比上面。
和上面一样的,有:
$f(n,m)=S(n,m)-g(n,m)$
$S(n,m)=2^{nm}$
$g(n,m)=\sum_{r=1}^{n-1}{ \sum_{s=1}^{m-1}{ C_{n-1}^{r-1}*C_{m}^{s}*f(r,s)*S(n-r,m-s) } }$
POJ 1737 经典DP的更多相关文章
- POJ 1141 经典DP 轨迹打印
又几天没写博客了,大二的生活实在好忙碌啊,开了五门专业课,每周都是实验啊实验啊实验啊....我说要本月刷够60题,但好像完不成了,也就每天1题的样子.如今写动规还是挺有条理的,包括这道需要打印轨迹,其 ...
- poj 1050 To the Max 最大子矩阵和 经典dp
To the Max Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- POJ 1160:Post Office 邮局经典DP
Post Office Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17168 Accepted: 9270 Desc ...
- poj 1737 Connected Graph
// poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...
- HDU 1003 Max Sum --- 经典DP
HDU 1003 相关链接 HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...
- poj1458 求最长公共子序列 经典DP
Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 45763 Accepted: 18 ...
- NYOJ - 矩形嵌套(经典dp)
矩形嵌套时间限制:3000 ms | 内存限制:65535 KB 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b< ...
- 51nod 1412 AVL树的种类(经典dp)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1412 题意: 思路: 经典dp!!!可惜我想不到!! $dp[i][k] ...
- NYOJ 16 矩形嵌套(经典DP)
http://acm.nyist.net/JudgeOnline/problem.php?pid=16 矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度: ...
随机推荐
- Mac--安装kubernetes并运行echoserver
安装minikube curl -Lo minikube https://storage.googleapis.com/minikube/releases/v0.15.0/minikube-darwi ...
- 转: 在CentOS 6.X 上面安装 Python 2.7.X
转:https://ruiaylin.github.io/2014/12/12/python%20update/ 评注: yum -y update //这个更新太坑了,1120更新包...想死的心都 ...
- Camtasia Studio如何添加画中画
将录像文件和其他视频文件拖放到剪辑箱,右击录像文件(camrec文件)添加到时间轴,一般这个就是主要的视频文件,我们会在这个基础上添加字幕,配音,画中画等,拖进去之后可以发现多出来了一个视频1和音频1 ...
- [LeedCode OJ]#28 Implement strStr()
[ 声明:版权全部,转载请标明出处,请勿用于商业用途. 联系信箱:libin493073668@sina.com] 题目链接:https://leetcode.com/problems/implem ...
- SpringMVC框架下使用jfreechart绘制折线图,柱状图,饼状图
java代码 @Controller public class CityAction { @Autowired private CityBiz cityBiz; //柱状图 @RequestMappi ...
- AVL树,红黑树,B-B+树,Trie树原理和应用
前言:本文章来源于我在知乎上回答的一个问题 AVL树,红黑树,B树,B+树,Trie树都分别应用在哪些现实场景中? 看完后您可能会了解到这些数据结构大致的原理及为什么用在这些场景,文章并不涉及具体操作 ...
- 6. IO复用:select 和 poll
select #include <sys/select.h> #include <sys/time.h> int select(int maxfdp1, fd_set *rea ...
- WPF中如何使用代码操作数据模板生成的控件
有一个Listbox,里面的Item是通过数据模板生成的,如下所示: <Border Margin="15" BorderBrush="Aqua" Bor ...
- Web 监听器
什么事web 监听器? Servlet规范中定义的一种特殊类 用于监听ServletContext.HttpSession和ServletRequest等象的创建与销毁的事件 用监听域对象的属性发生修 ...
- DOM操作三
1.以一个对象的x和y属性的方式返回滚动条的偏移量 function getScrollOffsets(w){ //使用指定的窗口,如果不带参数则使用当前窗口 w= w || window; //除了 ...