POJ 1737 经典DP
问题:求含有n个点的连通图的个数。
解:
考虑DP,$f(n)$表示n个点,每个点都和点1相连,且n个点互相连通的图的个数。
(蓝字非常重要,这个条件有效地避免了重复计算)
$g(n)$表示n个点,每个点都和点1相连,且不是n个点互相连通的图的个数。
$S(n)$表示n个点的图的个数。
显然,有:$f(n) = S(n)-g(n)$
$S(n) = 2^{n(n-1)/2}$
而且有(关键):$g(n) = \sum_{i=1}^{n-1}{C_{n-1}^{i-1} * f(i) * S(n-i)}$
从除了1之外的n-1个点中选出i-1个点,让这i个点互相连通,而剩下的n-i个点和这i个点没有边相连,互相之间随意连接。
当然,博主并不想写高精度
#include <iostream>
#include <cstring>
#include <algorithm> #define LL long long
#define N 61 using namespace std; LL f[N],g[N];
LL C[N][N];
const int n=; LL S(int x){
if(x==) return ;
return (1LL<<( (x*(x-)) /));
} int main(){
f[]=; g[]=;
C[][]=;
for(int i=;i<=n;i++){
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=C[i-][j-]+C[i-][j];
}
for(int i=;i<=n;i++){
g[i]=;
for(int j=;j<i;j++)
g[i] = g[i] + (C[i-][j-]*f[j]*S(i-j));
f[i]=S(i)-g[i];
}
int x;
while(cin>>x,x) cout<<f[x]<<endl;
return ;
}
接下来是多校联盟中有关于本题的拓展:
问题:求左侧n个点,右侧m个点的联通二分图个数
解:参照上面的解法。
$f(i,j)$表示左面i个点右面j个点,每个点都和左面的点1相连,且n个点互相连通的图的个数。
$g(i,j)$表示左面i个点右面j个点,每个点都和左面的点1相连,且n个点不是互相连通的图的个数。
$S(i,j)$定义类比上面。
和上面一样的,有:
$f(n,m)=S(n,m)-g(n,m)$
$S(n,m)=2^{nm}$
$g(n,m)=\sum_{r=1}^{n-1}{ \sum_{s=1}^{m-1}{ C_{n-1}^{r-1}*C_{m}^{s}*f(r,s)*S(n-r,m-s) } }$
POJ 1737 经典DP的更多相关文章
- POJ 1141 经典DP 轨迹打印
又几天没写博客了,大二的生活实在好忙碌啊,开了五门专业课,每周都是实验啊实验啊实验啊....我说要本月刷够60题,但好像完不成了,也就每天1题的样子.如今写动规还是挺有条理的,包括这道需要打印轨迹,其 ...
- poj 1050 To the Max 最大子矩阵和 经典dp
To the Max Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- POJ 1160:Post Office 邮局经典DP
Post Office Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17168 Accepted: 9270 Desc ...
- poj 1737 Connected Graph
// poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...
- HDU 1003 Max Sum --- 经典DP
HDU 1003 相关链接 HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...
- poj1458 求最长公共子序列 经典DP
Common Subsequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 45763 Accepted: 18 ...
- NYOJ - 矩形嵌套(经典dp)
矩形嵌套时间限制:3000 ms | 内存限制:65535 KB 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b< ...
- 51nod 1412 AVL树的种类(经典dp)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1412 题意: 思路: 经典dp!!!可惜我想不到!! $dp[i][k] ...
- NYOJ 16 矩形嵌套(经典DP)
http://acm.nyist.net/JudgeOnline/problem.php?pid=16 矩形嵌套 时间限制:3000 ms | 内存限制:65535 KB 难度: ...
随机推荐
- Spring的Hello World工程
通过Spring的Hello World工程研究以下几个点: 0.如何创建工程及引入依赖. 1.通过Spring的beans.xml实现依赖注入,动态创建实例. 2.了解Spring的工作原理. 具体 ...
- 关于PDF的读取与绘制
本文方法参考了:官方文档.见A function that draw a PDF page的代码部分: void MyDisplayPDFPage (CGContextRef myContext, s ...
- IE浏览器打不开解决的方法
windows 7和windows 8上的IE浏览器打不开.非常可能是权限问题,解决的方法: 点击"開始"-"执行",输入"regedit" ...
- hdu 1679 The Unique MST (克鲁斯卡尔)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24152 Accepted: 8587 D ...
- selenium python (九)对话框处理
#!/usr/bin/python# -*- coding: utf-8 -*-__author__ = 'zuoanvip' from selenium import webdriver #对于对 ...
- [BLE]CC2640之ADC功能实现和供电电压的採集
一.开篇 Write programs that do one thing and do it well ~~~~~ 发现非常多人关于使用CC2640/CC2650的过程中比較难以应对的问题就是实现A ...
- FSB总线、HT总线、QPI总线、DMI总线
http://wenku.baidu.com/link?url=d0NQFyvVpU--FpQUIjkPcdE036riitKgKib3385qr7VdB1oNUcIDpRndY-HH4ITjzJln ...
- mysql中修改表字段名/字段长度/字段类型详解
在mysql中我们对数据表字段的修改命令只要使用alter就可以了,下面我来给大家详细介绍mysql中修改表字段名/字段长度/字段类型等等一些方法介绍,有需要了解的朋友可参考. 先来看看常用的方法 M ...
- mac下Tomcat的安装
转自:http://blog.csdn.net/liuyuyefz/article/details/8072485 对于Apache Tomcat 估计很多童鞋都会,那么今天就简单说下在mac上进行t ...
- C++中的getopt的用法
getopt的用法 getopt被用来解析命令行选项参数.就不用自己写东东处理argv了. 点击(此处)折叠或打开 #include <unistd.h> extern char *opt ...