Joseph问题似乎是入门题,就是那个报数出圈的问题,不过它暴力模拟的复杂度是O(nm)的,如果题目的数据范围达到了30000,那就超时了。怎么用线段树维护呢?

我们可以这么考虑,每次我们其实要查询在当前这个点过了m个人是哪一个人。我们需要维护一下当前序列中一共有多少人,还需要维护每个人实际的位置在哪(因为人们出圈了之后他就不占位置了)

我们可以用一棵权值线段树来完成。

首先是修改,这个没什么好说的,直接单点修改改成0就行,然后同时返回修改的位置,这是一个人出圈的位置。不过怎么找到这个位置呢?我们可以首先确定下来这个人在当前序列的第几位,那么我们直接在线段树上二分就可以了,然后返回那个位置。

一开始我们要query一下从1到上一次停留位置有几个人,然后把这个值+m-1,mod现在所有的人数再+1就是当前位置,找一下那个人在哪就可以了。

看一下代码。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<set>
#define lowbit(x) x & (-x)
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n') using namespace std;
typedef long long ll;
const int M = ;
const ll INF = ; int read()
{
int ans = ,op = ;
char ch = getchar();
while(ch < '' || ch > '')
{
if(ch == '-') op = -;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
ans *= ;
ans += ch - '';
ch = getchar();
}
return ans * op;
} struct seg
{
int v;
} t[M<<]; int n,m,last,g; void build(int p,int l,int r)
{
if(l == r)
{
t[p].v = ;
return;
}
int mid = (l+r) >> ;
build(p<<,l,mid),build(p<<|,mid+,r);
t[p].v = t[p<<].v + t[p<<|].v;
} int query(int p,int l,int r,int pos)
{
if(l == r) return t[p].v = ,l;
int mid = (l+r) >> ,cur;
if(pos <= t[p<<].v) cur = query(p<<,l,mid,pos);
else cur = query(p<<|,mid+,r,pos-t[p<<].v);
t[p].v = t[p<<].v + t[p<<|].v;
return cur;
} int count(int p,int l,int r,int kl,int kr)
{
if(kl > kr) return ;
if(l == kl && r == kr) return t[p].v;
int mid = (l+r) >> ;
if(kr <= mid) return count(p<<,l,mid,kl,kr);
else if(kl > mid) return count(p<<|,mid+,r,kl,kr);
else return count(p<<,l,mid,kl,mid) + count(p<<|,mid+,r,mid+,kr);
} int main()
{
n = read(),m = read();
build(,,n);
rep(i,,n) printf("%d ",last = query(,,n,(count(,,n,,last)+m-)%t[].v+));
return ;
}

Joseph问题 (线段树)的更多相关文章

  1. J - Joseph and Tests Gym - 102020J (二分+线段树)

    题目链接:https://cn.vjudge.net/contest/283920#problem/J 题目大意:首先给你n个门的高度,然后q次询问,每一次询问包括两种操作,第一种操作是将当前的门的高 ...

  2. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  3. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  4. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  5. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  6. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  7. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  8. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

  9. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

随机推荐

  1. PHP:POST OR GET 请求

    文章来源:http://www.cnblogs.com/hello-tl/p/7685216.html /** * 模拟提交参数,支持https提交 可用于各类api请求 * @param strin ...

  2. 谷歌应用商店chrome扩展程序和APP的发布流程

    互联网上有很多大牛,他们再工作中需要一些难题,再找到解决办法后,如果会使用js的话,大多数人就可以自己动手写一个chrome插件,而且非常容易.开发人员都喜欢与大家分享自己的成就!google是一个全 ...

  3. 解决Antimalware Service Executable CPU,内存占用高的问题

    1.win键+R键打开运行对话框框,输入gpedit.msc打开本地组策略编辑器(组策略):2.依次打开计算机配置-管理模板-Windows组件-Windows Defender:3.如果要关闭Win ...

  4. 慕课笔记利用css进行布局【混合布局练习】

    通过学习div的布局,以一个简单的内容管理网站的布局为例子,用div+css进行简单的网页布局,加深学印象: <html> <head> <title>CSS+di ...

  5. SQL Server 2008如何创建定期自动备份任务

    我们知道,利用SQL Server 2008数据库可以实现数据库的定期自动备份.方法是用SQL SERVER 2008自带的维护计划创建一个计划对数据库进行备份,下面我们将SQL SERVER 200 ...

  6. 洛谷 P1566 加等式

    P1566 加等式 题目描述 对于一个整数集合,我们定义“加等式”如下:集合中的某一个元素可以表示成集合内其他元素之和.如集合{1,2,3}中就有一个加等式:3=1+2,而且3=1+2 和3=2+1是 ...

  7. mysql排序关于英文字母abcd..xyz排序。

    mysql会自动进行比如pxj,pyj. 再根据p进行排序时候,会自动进行第二个字母的排序 select * from tbl_actor where first_char like 'p%' ord ...

  8. springmvc 中model中放入枚举类型

    我们直接看样例: Map<String, String> mallMap = new HashMap<String, String>(); mallMap.put(MallSt ...

  9. Dell PowerEdge RAID Controller (PERC) | Dell

      Dell PowerEdge RAID Controller (PERC)             The Dell™ PERC (PowerEdge™ RAID Controller) fami ...

  10. NA交换②

    虚拟局域网VLAN的核心目的:     将一个大的网络划分为小的网络,也称为网络分片(Segementation):一个VLAN对应着一个广播域,最好对应一个网络子网(为VLAN间的路由作准备).   ...