ATM Mechine

E(i,j):存款的范围是[0,i],还可以被警告j次的期望值。

E(i,j) = \(max_{k=1}^{i}{\frac{i-k+1}{i+1} * E(i-k,j)+\frac{k}{i+1}*E(k-1,j-1)+1}\)
这样时间复杂度是\(O(K^2W)\)的。
假如Alice使用的是二分策略,那么在最坏情况下至多被警告\(\left \lceil log_{2}{K} \right \rceil\) 次。
于是W:=min(W,15)就可以了。

然后clar有人问y是不是要整数。由于存款是整数,你取小数的钱没有任何意义啊。

Cycle:

首先A、B两个串循环相同的话,那么A串可以拆成一个前缀和一个后缀,交换下位置就得到了B串。设bs[i]表示所有的k满足子串B[k...k+i]和子串A[0...i]相同,用bitset来存,然后再枚举下后缀的起始位置,利用bitset的位操作可解。复杂度\(O(n^2/64)\)

Divide the Sequence

把长度为n的序列分成尽量多的连续段,使得每一段的每个前缀和都不小于0。保证有解。
从后往前贪心分段即可。

How Many Triangles

数一数锐角的数量A和直角+钝角的数量B,那么答案就是(A-2B)/3。
暴力算的话是\(O(n^3)\)的。使用极角排序+two pointers就可以做到\(O(n^2log\ n)\)。

这边钝角指代范围在90度到180度之间的角(不包括90和180)。

Interesting:

用manacher算法O(n)求出所有的回文半径。有了回文半径后,就可以求出cntL[i]表示以i结尾的回文串的起始位置的和cntR[i]表示以i起始的回文串的结尾位置的和,然后就可以求出答案了,这里要注意奇偶长度回文串的不同处理。复杂度O(n)

Interval:

首先考虑区间覆盖几个(大于1个)序列的,设ans[i]表示区间gcd为i的倍数的区间数,那么除了两端的序列,中间的所有序列的gcd都为i的倍数,于是搞出每个序列的gcd和所有的前缀gcd和后缀gcd,对于ans[i]就可以利用所有的前缀gcd和后缀gcd和完整序列gcd来求,需要好好处理细节。复杂度为O(n*(最大因子个数))。
然后考虑区间在一个序列中的,由于对于每个位置结尾的不同gcd数最多是log个,所以\(O(n\ log\ n\ log\ n)\)可以解决。

K-wolf Number

数位dp,状态里一下前K-1个数位上的数字即可。标程是std::map<std::vector,long long>这样记的状态。

Level Up

当第i个人的能力值从A_i变成100000时,会导致他在树上的祖先中原本中位数不小于A_i的部分发生变化,从\(\left \lceil \frac{t}{2} \right \rceil\ th\) 变成\((\left \lceil \frac{t}{2} \right \rceil + 1)\ th\)。所以如果知道每个节点的这两个值,就可以dfs一遍用树状数组求出答案了。
考虑如何求\(\left \lceil \frac{t}{2} \right \rceil th\) 和\((\left \lceil \frac{t}{2} \right \rceil + 1) th\)。
一种做法是使用CCPC-WFinal 1008的线段树方法,为每个节点维护一棵权值线段树,然后合并两棵线段树时,如果一棵是空的,就返回另一棵,否则递归合并。然后就是求线段树第K大这样的经典问题了。这个做法时间复杂度O(nlogn),空间复杂度O(nlogn)。
另一个做法是每个节点维护两个堆,第一个堆放前一半元素,其他放在第二堆里。然后合并堆时使用启发式合并的策略即可。这样时间\(O(nlog\ n^2)\),空间O(n)。
然而实测第二个做法跑得比第一个快。

Permutation:

首先求出dp[i][j][k]表示i子树中j在第k个位置的合法排列情况数,然后对于某一个u子树,枚举下u子树下的两个不同子树的v1,p1,v2,p2,表示v1结点在第一个排列第p1个位置,v2结点在第p2位置,再枚举下v1结点插入到v2排列的第k个位置,这样子的复杂度是\(O(n^5)\)。由于v1和v2有大小关系,可以处理出前缀和的东西来优化下,可以达到\(O(n^4)\)的复杂度。实际上努力下好像也可以达到\(O(n^3)\)的复杂度,但这题只要求\(O(n^4)\)。

Prefix:

将字符串一个个的插入字典序,在字典序中维护好有该前缀串的最大编号字符串,用一个线段树维护好,每个字符串控制了多少个前缀串,由于询问是在线的,所以用主席树来维护。于是对一个询问(l,r),在第r个线段树求一下区间(l,r)的和即为答案。复杂度\(O(n\ log\ n)\)

Two:

水题。dp[i][j]表示A序列前i个数和B序列前j个数的相同子序列对有多少个。复杂度\(O(n^2)\)

World is Exploding

给一个长度n的序列A,问有多少四元组(a,b,c,d)满足:4个数两两不同,1 <= a < b <= n,1 <= c < d <= n,A_a < A_b,A_c > A_d。
定义:
\(rg(x) = \left | \{ y | x < y <= n, A_x < A_y \} \right |\)
\(lg(x) = \left | \{ y | 1 <= y < x, A_x < A_y \} \right |\)
\(rs(x) = \left | \{ y | x < y <= n, A_x > A_y \} \right |\)
\(ls(x) = \left | \{ y | 1 <= y < x, A_x > A_y \} \right |\)
\(allg = \sum_{i=1}^{n}{rs(i)}\)
以上都可以通过树状数组在\(O(n\ log\ n)\)的时间内求出(需要先对A序列进行离散化处理)。
然后,
\(answer = \sum_{a=1}^{n}{rg(a) * (allg - lg(a) - rs(a))} - \sum_{b=1}^{n}{ls(b) * (lg(b) + rs(b)}\)

2016 Multi-University Training Contest 5 solutions BY ZSTU的更多相关文章

  1. 2016 Al-Baath University Training Camp Contest-1

    2016 Al-Baath University Training Camp Contest-1 A题:http://codeforces.com/gym/101028/problem/A 题意:比赛 ...

  2. 2015 Multi-University Training Contest 6 solutions BY ZJU(部分解题报告)

    官方解题报告:http://bestcoder.hdu.edu.cn/blog/2015-multi-university-training-contest-6-solutions-by-zju/ 表 ...

  3. 2016 Multi-University Training Contest 10 solutions BY BUPT

    1001. 一个数组上的两个区间求中位数,可以通过分类讨论直接找到中位数,复杂度O(1).不过本题数据较小,优美的log(n)也可过. 1002. 直接求得阴影面积表达式即可. 1003. 二分完成时 ...

  4. 2016 Multi-University Training Contest 9 solutions BY 金策工业综合大学

    A Poor King Tag: Reversed BFS Preprocessing is needed to calculate answers for all positions (states ...

  5. 2016 Multi-University Training Contest 8 solutions BY 学军中学

    1001: 假设有4个红球,初始时从左到右标为1,2,3,4.那么肯定存在一种方案,使得最后结束时红球的顺序没有改变,也是1,2,3,4. 那么就可以把同色球都写成若干个不同色球了.所以现在共有n个颜 ...

  6. 2016 Multi-University Training Contest 7 solutions BY SYSU

    Ants 首先求出每个点的最近点. 可以直接对所有点构造kd树,然后在kd树上查询除本身以外的最近点,因为对所有点都求一次,所以不用担心退化. 也可以用分治做,同样是O(NlogN)的复杂度. 方法是 ...

  7. 2016 Multi-University Training Contest 6 solutions BY UESTC

    A Boring Question \[\sum_{0\leq k_{1},k_{2},\cdots k_{m}\leq n}\prod_{1\leq j< m}\binom{k_{j+1}}{ ...

  8. 2016 Multi-University Training Contest 4 solutions BY FZU

    1001 Another Meaning 对于这个问题,显然可以进行DP: 令dp[i]表示到i结尾的字符串可以表示的不同含义数,那么考虑两种转移: 末尾不替换含义:dp[i - 1] 末尾替换含义: ...

  9. 2016 Multi-University Training Contest 3 solutions BY 绍兴一中

    1001 Sqrt Bo 由于有\(5\)次的这个限制,所以尝试寻找分界点. 很容易发现是\(2^{32}\),所以我们先比较输入的数字是否比这个大,然后再暴力开根. 复杂度是\(O(\log\log ...

随机推荐

  1. RabbitMQ十:重要方法简述(参数)

    主要方法 前言 经过前面的学习,RabbitMQ 已经拙见有一定认识和了解,今天主要针对我们在前面学习方法进行一次小总结,本篇文章也想在开头写的,但是后来考虑,如果我都把方法都一一列举,我想大家都没很 ...

  2. mvc报( 检测到有潜在危险的 request.form 值 )错的解决方案

    今天在做项目中遇到了报( 检测到有潜在危险的 request.form 值 )错,百度过后解决了该问题,出此问题主要还是因为提交的Form中有HTML字符串,例如你在TextBox中输入了html标签 ...

  3. AJPFX总结OpenJDK 和 HashMap大量数据处理时,避免垃圾回收延迟的技巧二

    HashMap简史 “Hash Code”这个概念第一次出现是在1953年1月的<Computing literature>中,H. P. Luhn  (1896-1964) 在一篇 IB ...

  4. 毕业设计:HomeFragment(一)

    一.主要思路 主要是通过ListView实现. 考虑到以后会添加长按修改功能,所以好几个地方都是用的FramLayout,而且CheckBox初始状态是被隐藏的.给ListView添加OnItemCl ...

  5. Github-Client(ANDROID)开源之旅(三) ------ 巧用ViewPagerIndicator

    接上篇博文:Github-Client(ANDROID)开源之旅(二) ------ 浅析ActionBarSherkLock 文中结合了网易新闻客户端讲解了开源库ActionBarSherklock ...

  6. FPGA原型验证

    为什么要做FPGA原型验证? FPGA原型验证可以在IC流片前对芯片功能和性能做出评估,同时,可以给软件设计人员提供验证平台.所有的设计,无论是SOC还是ASIC都需要被验证(功能和时序验证),以确保 ...

  7. General mistakes in parallel computing

    这是2013年写的一篇旧文,放在gegahost.net上面  http://raison.gegahost.net/?p=97 March 11, 2013 General mistakes in ...

  8. 在Servlet中使用@Autowire的方法

    在你调用的Servlet中添加如下代码: public void init(ServletConfig config) { try { super.init(config); SpringBeanAu ...

  9. win7系统 windows update 总是更新失败解决方法:

    win7系统 windows update 总是更新失败解决方法: 右键单击桌面“计算机”选择“管理“. 进到“计算机管理“窗口后,展开”服务和应用程序“并双击”服务“,在窗口右侧按照名称找到”Win ...

  10. (译)IOS block编程指南 1 介绍

    Introduction(介绍) Block objects are a C-level syntactic and runtime feature. They are similar to stan ...