2016 Multi-University Training Contest 5 solutions BY ZSTU
ATM Mechine
E(i,j):存款的范围是[0,i],还可以被警告j次的期望值。
E(i,j) = \(max_{k=1}^{i}{\frac{i-k+1}{i+1} * E(i-k,j)+\frac{k}{i+1}*E(k-1,j-1)+1}\)
这样时间复杂度是\(O(K^2W)\)的。
假如Alice使用的是二分策略,那么在最坏情况下至多被警告\(\left \lceil log_{2}{K} \right \rceil\) 次。
于是W:=min(W,15)就可以了。
然后clar有人问y是不是要整数。由于存款是整数,你取小数的钱没有任何意义啊。
Cycle:
首先A、B两个串循环相同的话,那么A串可以拆成一个前缀和一个后缀,交换下位置就得到了B串。设bs[i]表示所有的k满足子串B[k...k+i]和子串A[0...i]相同,用bitset来存,然后再枚举下后缀的起始位置,利用bitset的位操作可解。复杂度\(O(n^2/64)\)
Divide the Sequence
把长度为n的序列分成尽量多的连续段,使得每一段的每个前缀和都不小于0。保证有解。
从后往前贪心分段即可。
How Many Triangles
数一数锐角的数量A和直角+钝角的数量B,那么答案就是(A-2B)/3。
暴力算的话是\(O(n^3)\)的。使用极角排序+two pointers就可以做到\(O(n^2log\ n)\)。
这边钝角指代范围在90度到180度之间的角(不包括90和180)。
Interesting:
用manacher算法O(n)求出所有的回文半径。有了回文半径后,就可以求出cntL[i]表示以i结尾的回文串的起始位置的和cntR[i]表示以i起始的回文串的结尾位置的和,然后就可以求出答案了,这里要注意奇偶长度回文串的不同处理。复杂度O(n)
Interval:
首先考虑区间覆盖几个(大于1个)序列的,设ans[i]表示区间gcd为i的倍数的区间数,那么除了两端的序列,中间的所有序列的gcd都为i的倍数,于是搞出每个序列的gcd和所有的前缀gcd和后缀gcd,对于ans[i]就可以利用所有的前缀gcd和后缀gcd和完整序列gcd来求,需要好好处理细节。复杂度为O(n*(最大因子个数))。
然后考虑区间在一个序列中的,由于对于每个位置结尾的不同gcd数最多是log个,所以\(O(n\ log\ n\ log\ n)\)可以解决。
K-wolf Number
数位dp,状态里一下前K-1个数位上的数字即可。标程是std::map<std::vector,long long>这样记的状态。
Level Up
当第i个人的能力值从A_i变成100000时,会导致他在树上的祖先中原本中位数不小于A_i的部分发生变化,从\(\left \lceil \frac{t}{2} \right \rceil\ th\) 变成\((\left \lceil \frac{t}{2} \right \rceil + 1)\ th\)。所以如果知道每个节点的这两个值,就可以dfs一遍用树状数组求出答案了。
考虑如何求\(\left \lceil \frac{t}{2} \right \rceil th\) 和\((\left \lceil \frac{t}{2} \right \rceil + 1) th\)。
一种做法是使用CCPC-WFinal 1008的线段树方法,为每个节点维护一棵权值线段树,然后合并两棵线段树时,如果一棵是空的,就返回另一棵,否则递归合并。然后就是求线段树第K大这样的经典问题了。这个做法时间复杂度O(nlogn),空间复杂度O(nlogn)。
另一个做法是每个节点维护两个堆,第一个堆放前一半元素,其他放在第二堆里。然后合并堆时使用启发式合并的策略即可。这样时间\(O(nlog\ n^2)\),空间O(n)。
然而实测第二个做法跑得比第一个快。
Permutation:
首先求出dp[i][j][k]表示i子树中j在第k个位置的合法排列情况数,然后对于某一个u子树,枚举下u子树下的两个不同子树的v1,p1,v2,p2,表示v1结点在第一个排列第p1个位置,v2结点在第p2位置,再枚举下v1结点插入到v2排列的第k个位置,这样子的复杂度是\(O(n^5)\)。由于v1和v2有大小关系,可以处理出前缀和的东西来优化下,可以达到\(O(n^4)\)的复杂度。实际上努力下好像也可以达到\(O(n^3)\)的复杂度,但这题只要求\(O(n^4)\)。
Prefix:
将字符串一个个的插入字典序,在字典序中维护好有该前缀串的最大编号字符串,用一个线段树维护好,每个字符串控制了多少个前缀串,由于询问是在线的,所以用主席树来维护。于是对一个询问(l,r),在第r个线段树求一下区间(l,r)的和即为答案。复杂度\(O(n\ log\ n)\)
Two:
水题。dp[i][j]表示A序列前i个数和B序列前j个数的相同子序列对有多少个。复杂度\(O(n^2)\)
World is Exploding
给一个长度n的序列A,问有多少四元组(a,b,c,d)满足:4个数两两不同,1 <= a < b <= n,1 <= c < d <= n,A_a < A_b,A_c > A_d。
定义:
\(rg(x) = \left | \{ y | x < y <= n, A_x < A_y \} \right |\)
\(lg(x) = \left | \{ y | 1 <= y < x, A_x < A_y \} \right |\)
\(rs(x) = \left | \{ y | x < y <= n, A_x > A_y \} \right |\)
\(ls(x) = \left | \{ y | 1 <= y < x, A_x > A_y \} \right |\)
\(allg = \sum_{i=1}^{n}{rs(i)}\)
以上都可以通过树状数组在\(O(n\ log\ n)\)的时间内求出(需要先对A序列进行离散化处理)。
然后,
\(answer = \sum_{a=1}^{n}{rg(a) * (allg - lg(a) - rs(a))} - \sum_{b=1}^{n}{ls(b) * (lg(b) + rs(b)}\)
2016 Multi-University Training Contest 5 solutions BY ZSTU的更多相关文章
- 2016 Al-Baath University Training Camp Contest-1
2016 Al-Baath University Training Camp Contest-1 A题:http://codeforces.com/gym/101028/problem/A 题意:比赛 ...
- 2015 Multi-University Training Contest 6 solutions BY ZJU(部分解题报告)
官方解题报告:http://bestcoder.hdu.edu.cn/blog/2015-multi-university-training-contest-6-solutions-by-zju/ 表 ...
- 2016 Multi-University Training Contest 10 solutions BY BUPT
1001. 一个数组上的两个区间求中位数,可以通过分类讨论直接找到中位数,复杂度O(1).不过本题数据较小,优美的log(n)也可过. 1002. 直接求得阴影面积表达式即可. 1003. 二分完成时 ...
- 2016 Multi-University Training Contest 9 solutions BY 金策工业综合大学
A Poor King Tag: Reversed BFS Preprocessing is needed to calculate answers for all positions (states ...
- 2016 Multi-University Training Contest 8 solutions BY 学军中学
1001: 假设有4个红球,初始时从左到右标为1,2,3,4.那么肯定存在一种方案,使得最后结束时红球的顺序没有改变,也是1,2,3,4. 那么就可以把同色球都写成若干个不同色球了.所以现在共有n个颜 ...
- 2016 Multi-University Training Contest 7 solutions BY SYSU
Ants 首先求出每个点的最近点. 可以直接对所有点构造kd树,然后在kd树上查询除本身以外的最近点,因为对所有点都求一次,所以不用担心退化. 也可以用分治做,同样是O(NlogN)的复杂度. 方法是 ...
- 2016 Multi-University Training Contest 6 solutions BY UESTC
A Boring Question \[\sum_{0\leq k_{1},k_{2},\cdots k_{m}\leq n}\prod_{1\leq j< m}\binom{k_{j+1}}{ ...
- 2016 Multi-University Training Contest 4 solutions BY FZU
1001 Another Meaning 对于这个问题,显然可以进行DP: 令dp[i]表示到i结尾的字符串可以表示的不同含义数,那么考虑两种转移: 末尾不替换含义:dp[i - 1] 末尾替换含义: ...
- 2016 Multi-University Training Contest 3 solutions BY 绍兴一中
1001 Sqrt Bo 由于有\(5\)次的这个限制,所以尝试寻找分界点. 很容易发现是\(2^{32}\),所以我们先比较输入的数字是否比这个大,然后再暴力开根. 复杂度是\(O(\log\log ...
随机推荐
- 关于c#的结构体struct与class的区别
C# 结构体 struct C#中结构类型和类类型在语法上非常相似,他们都是一种数据结构,都可以包括数据成员和方法成员. 结构和类的区别: 1.结构是值类型,它在栈中分配空间:而类是引用类型,它在堆中 ...
- laravel关联用户
参考文档:模型关联-反向关联 belongsToor 模型层 app/Post.php public function user() { return $this->belongsTo('\Ap ...
- c# 从DataGridVieew导出到excel
public static bool DataGridViewToExcel(DataGridView dataGridView, bool isShowExcel) { int rowsQty = ...
- 原创 齐天大圣老司机亲传rescue恢复磁盘分区
老葵花哥哥课堂开课了本文档秉承爱看不看的原则 一不要钱 二服务大众的高尚情操咱们今天讲一讲rescue恢复磁盘分区 首先咱们搭建环境搞起来 (parted) mkpart #创建分区 Partitio ...
- feign 负载均衡熔断器
feign:和zuul配合进行负载均衡. 注解的含义: @EnableDiscoveryClient 声明它是一个资源服务端,即可以通过某些接口调用一些资源: @EnableFeignClients ...
- 关于sigleton模式
单例模式的要点有三个:一是某个类只能有一个实例:二是它必须自行创建这个实例:三是它必须自行向整个系统提供这个实例. 从具体实现角度来说,就是以下三点:一是单例模式的类只提供私有的构造函数,二是类定义中 ...
- 使用阿里云RDS
1)购买 注意内网免费 外网收费 内网需要跟服务器ECS在同一VPC下 即ECS买在华东1 RDS也必须在华东1 2)使用 配置白名单 全部通过设置为0.0.0.0/0 (不建议) 创建账户 创建数 ...
- excel数据比对,查找差异
1.选中需比对的数据 2.开始->条件格式->突出显示单元格规则->重复值 3.选择唯一值,点击确定 4.结果展示 5.颜色标识的即:不同值
- 找回Settings Sync的gist id和token
方法一:如果你本地有缓存参考:https://www.cnblogs.com/zhang1028/p/9514471.html 方法二:如果你电脑重装系统了 1.找回gist id 登陆你的githu ...
- WCF未找到终结点
配置都配了,仍然找不到,config文件没有重新加载,原因不详,只能重新编译一下,就好了....后续找找原因看看