Description

题目链接

求一张无向带权图的边双连通生成子图的最小代价。

Solution

核心的思路是,一个点双连通分量肯定是一堆环的并。

考虑增量地构造这个边双连通图,每次把一个环并进去,相当于加入了一条链。

那么这个转移需要:原集合的代价,链的代价,链的端点连入集合的代价。

设 \(A\) 为新图点集,\(S\) 为原图点集,设 \(f[S]\) 表示点集 \(S\) 构成边双连通分量的最小代价。

设 \(T\) 为新加入链的点集,\(u,v\) 分别为加入的链的端点,设 \(g[u][v][T]\) 表示该链的最小代价。

设 \(mm[u][S]\) 表示点 \(u\) 向集合 \(S\) 中的点所连边中,边权最小值。

\[f[A]=f[S]+g[u][v][T]+mn[u][S]+mn[v][S]
\]

但是注意,如果新加入的链退化成了一个点,加入的代价就算少了。

因此设 \(sec[u][S]\) 表示点 \(u\) 向集合 \(S\) 中的点所连边中,边权次小值。

那么对于 \(u=v\) 的情况:

\[f[A]=f[S]+g[u][u][T]+mn[u][S]+sec[u][S]
\]

预处理 \(mn\) 和 \(sec\) 复杂度 \(\mathcal O(n^2\times 2^n)\)

预处理 \(g\) 暴力枚举一个端点的变化,复杂度 \(\mathcal O(n^3\times 2^n)\)

计算 \(f\) 需要枚举子集,然后枚举 \(u, v\) ,复杂度 \(\mathcal O(n^2\times 3^n )\)

#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 15
#define M 105
#define S 4105
using namespace std; inline int rd() {
int x = 0;
char c = getchar();
while (!isdigit(c)) c = getchar();
while (isdigit(c)) {
x = x * 10 + (c ^ 48); c = getchar();
}
return x;
} int n, m, tot, lim, hd[N]; struct edge{int w, to, nxt;} e[M << 1]; inline void add(int u, int v, int w) {
e[++tot].to = v; e[tot].w = w;
e[tot].nxt = hd[u]; hd[u] = tot;
} //mn[i][S]: i 到 S 最短路
//sec[i][S]: i 到 S 次短路
//g[i][j][S]: 一条链,节点集合为 S, 端点分别为 i, j
//f[S]: 集合为 S 的合法方案 int f[S], g[N][N][S], mn[N][S], sec[N][S]; inline void mmin(int &x, int y) {x = min(x, y);} inline int countbit(int s) {
int res = 0;
for (int i = 0; i < n; ++i)
res += ((s & (1 << i)) > 0);
return res;
} inline void work() {
n = rd(); m = rd();
tot = 0; lim = (1 << n);
for (int i = 0; i <= n; ++i) hd[i] = 0;
for (int i = 1, u, v, w; i <= m; ++i) {
u = rd() - 1; v = rd() - 1; w = rd();
add(u, v, w); add(v, u, w);
}
memset(f, 0x1f, sizeof(f));
memset(g, 0x1f, sizeof(g));
memset(mn, 0x1f, sizeof(mn));
memset(sec, 0x1f, sizeof(sec));
int inf = f[0];
//处理 mn 和 sec
for (int s = 1; s < lim; ++s)
for (int u = 0; u < n; ++u)
if ((s & (1 << u)) == 0)
for (int i = hd[u], v; i; i = e[i].nxt) {
v = e[i].to;
if ((s & (1 << v)) == 0) continue;
if (e[i].w < mn[u][s]) {
sec[u][s] = mn[u][s];
mn[u][s] = e[i].w; continue;
} else sec[u][s] = min(sec[u][s], e[i].w);
}
//处理 g
for (int u = 0; u < n; ++u) g[u][u][1 << u] = 0;
for (int s = 1; s < lim; ++s)
for (int u = 0; u < n; ++u)
for (int x = 0; x < n; ++x)
if (g[u][x][s] < inf)
for (int i = hd[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (s & (1 << v)) continue;
mmin(g[v][x][s | (1 << v)], g[u][x][s] + e[i].w);
}
//处理 f
for (int u = 0; u < n; ++u) f[1 << u] = 0;
for (int nw = 1; nw < lim; ++nw)
if (countbit(nw) >= 2) {
for (int s = nw & (nw - 1); s; s = (s - 1) & nw) {
int t = nw - s;
for (int u = 0; u < n; ++u)
if (s & (1 << u)) for (int v = 0; v < n; ++v)
if (s & (1 << v) && g[u][v][s] < inf) {
if (u == v) f[nw] = min(f[nw], f[t] + g[u][v][s] + mn[u][t] + sec[u][t]);
else f[nw] = min(f[nw], f[t] + g[u][v][s] + mn[u][t] + mn[v][t]);
}
}
}
if (f[lim - 1] == inf) puts("impossible");
else printf("%d\n", f[lim - 1]);
} int main() {
int testcase = rd();
while (testcase--) work();
return 0;
}

[ SNOI 2013 ] Quare的更多相关文章

  1. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  2. SharePoint 2013: A feature with ID has already been installed in this farm

    使用Visual Studio 2013创建一个可视web 部件,当右击项目选择"部署"时报错: "Error occurred in deployment step ' ...

  3. Visual Studio 2013 添加一般应用程序(.ashx)文件到SharePoint项目

    默认,在用vs2013开发SharePoint项目时,vs没有提供一般应用程序(.ashx)的项目模板,本文解决此问题. 以管理员身份启动vs2013,创建一个"SharePoint 201 ...

  4. SharePoint 2013 create workflow by SharePoint Designer 2013

    这篇文章主要基于上一篇http://www.cnblogs.com/qindy/p/6242714.html的基础上,create a sample workflow by SharePoint De ...

  5. Install and Configure SharePoint 2013 Workflow

    这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...

  6. SharePoint 2013 configure and publish infopth

    This article will simply descript how to configure and publish a InfoPath step by step. Note: To con ...

  7. TFS 2013 培训视频

    最近给某企业培训了完整的 TFS 2013 系列课程,一共四天. 下面是该课程的内容安排: 项目管理     建立项目     成员的维护     Backlog 定义     任务拆分     迭代 ...

  8. Visual Studio 2013 Ultimate因为CodeLens功能导致Microsoft.Alm.Shared.Remoting.RemoteContainer.dll高CPU占用率的折中解决方案

    1.为什么Microsoft.Alm.Shared.Remoting.RemoteContainer.dll的CPU占用率以及内存使用率会那么高? 在Visual Studio 2013 Ultima ...

  9. 沙盒解决方案解决SharePoint 2013 以其他身份登陆的问题

    众所周知,SharePoint 2013没有像SharePoint 2010那样有一个叫"以其他身份登录"的菜单项. 当然解决方案也很多,比如你可以直接修改Welcome.ascx ...

随机推荐

  1. Codeforces Round #352 (Div. 2) C. Recycling Bottles

      C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  2. Educational Codeforces Round 10 D. Nested Segments

    D. Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. oracle:os认证用户登录测试

        90%的情况下,我们使用的都是数据库认证用户登录oracle,但还存在使用OS认证用户登录oracle的情况: 下面就实验一下OS用户要登录oracle相关操作: 测试环境:oracle10. ...

  4. Oracle:热备测试

    我们知道Oracle数据库热备有3步: 1. alter tablespace  tbname  begin backup: 2. cp  /×××      to   /×× 3. alter ta ...

  5. codeforces 696B B. Puzzles(树形dp+概率)

    题目链接: B. Puzzles time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  6. hdu-2066 一个人的旅行(最短路spfa)

    题目链接: 一个人的旅行 Time Limit: 1000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) Pr ...

  7. Windows Mysql启动出现1069错误 “由于登录失败而无法启动服务” 的处理方法

    问题现象 windows下mysql服务无法启动,报1069错误. 问题原因 如果Mysql启动用户的密码或者权限错误,会导致Windows服务器Mysql启动时出现"由于登录失败而无法启动 ...

  8. SpringMVC实现ajax文件上传

    SpringMVC实现文件上传,直接上代码: 后台代码: 01 @RequestMapping(value = "/uploadApk") 02 @ResponseBody 03 ...

  9. Python-Django使用MemcachedCache缓存

    最近工作中使用到缓存,简单记录之... 关于django的几种缓存方式,就不在做介绍了,网上一搜一大把:1.8.2官方文档, Django 缓存,Python菜鸟之路:django缓存 学习了之后,选 ...

  10. MongoDB 用户名密码登录

    Mongodb enable authentication MongoDB 默认直接连接,无须身份验证,如果当前机器可以公网访问,且不注意Mongodb 端口(默认 27017)的开放状态,那么Mon ...