Count the Colors


Time Limit: 2 Seconds     
Memory Limit: 65536 KB


Painting some colored segments on a line, some previously painted segments may be covered by some the subsequent ones.

Your task is counting the segments of different colors you can see at last.

Input



The first line of each data set contains exactly one integer n, 1 <= n <= 8000, equal to the number of colored segments.

Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:



x1 x2 c



x1 and x2 indicate the left endpoint and right endpoint of the segment, c indicates the color of the segment.

All the numbers are in the range [0, 8000], and they are all integers.

Input may contain several data set, process to the end of file.

Output



Each line of the output should contain a color index that can be seen from the top, following the count of the segments of this color, they should be printed according to the color index.

If some color can't be seen, you shouldn't print it.

Print a blank line after every dataset.

Sample Input



5

0 4 4

0 3 1

3 4 2

0 2 2

0 2 3

4

0 1 1

3 4 1

1 3 2

1 3 1

6

0 1 0

1 2 1

2 3 1

1 2 0

2 3 0

1 2 1

Sample Output



1 1

2 1

3 1

1 1

0 2

1 1


Author: Standlove

Source: ZOJ Monthly, May 2003





题意:在一条长度为8000的线段上染色,每次把区间[a,b]染成c颜色。

显然,后面染上去的颜色会覆盖掉之前的颜色。求染完之后,每种颜色在线段上有多少个间断的区间。

线段树Lazy区间改动。

让我无语的是——输出要求是按颜色编号从0到8000输出的。

而我傻傻的按插入顺序输出了1个小时。。

。o(╯□╰)o



AC代码:


#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 8000+10
using namespace std;
int color[MAXN<<2];//对节点染色
void PushDown(int o)
{
if(color[o] != -1)
{
color[o<<1] = color[o<<1|1] = color[o];
color[o] = -1;
}
}
void update(int o, int l, int r, int L, int R, int v)
{
if(L <= l && R >= r)
{
color[o] = v;
return ;
}
PushDown(o);
int mid = (l + r) >> 1;
if(L <= mid)
update(o<<1, l, mid, L, R, v);
if(R > mid)
update(o<<1|1, mid+1, r, L, R, v);
}
int rec[MAXN];//存储i节点的颜色
int top = 0;
void query(int o, int l, int r)
{
if(l == r)
{
rec[top++] = color[o];//记录节点的颜色
return ;
}
int mid = (l + r) >> 1;
PushDown(o);
query(o<<1, l, mid);
query(o<<1|1, mid+1, r);
}
int num[MAXN];//记录颜色出现的 段数
int main()
{
int N;
while(scanf("%d", &N) != EOF)
{
memset(color, -1, sizeof(color));
int a, b, c;
for(int i = 1; i <= N; i++)
{
scanf("%d%d%d", &a, &b, &c);
update(1, 1, 8000, a+1, b, c);//相应颜色数 先加一
}
memset(rec, -1, sizeof(rec));
top = 0;//初始化
query(1, 1, 8000);
memset(num, 0, sizeof(num));//初始化
int i, j;
for(i = 0; i < top;)
{
if(rec[i] == -1)
{
i++;
continue;
}
num[rec[i]]++;
for(j = i + 1; j < top; j++)
{
if(rec[j] != rec[i] || rec[j] == -1)
break;
}
i = j;
}
for(int i = 0; i <= 8000; i++)
{
if(num[i])
printf("%d %d\n", i, num[i]);
}
printf("\n");
}
return 0;
}

直接模拟也能够过:


#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (10000+10)
#define MAXM (50000000)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
using namespace std;
int num[MAXN];
int color[MAXN];
int main()
{
int n;
while(Ri(n) != EOF)
{
int Max = -INF;
CLR(color, -1);
for(int i = 0; i < n; i++)
{
int x, y, c;
Ri(x); Ri(y); Ri(c);
Max = max(Max, c);
for(int j = x; j < y; j++)
color[j] = c;
}
CLR(num, 0);
for(int i = 0; i <= 8000; )
{
int temp = color[i];
if(temp == -1)
{
i++;
continue;
}
i++;
while(temp == color[i])
i++;
num[temp]++;
}
for(int i = 0; i <= Max; i++)
if(num[i])
printf("%d %d\n", i, num[i]);
printf("\n");
}
return 0;
}

zoj 1610 Count the Colors 【区间覆盖 求染色段】的更多相关文章

  1. ZOJ 1610 Count the Colors(区间染色)

    题目大意:多组数据,每组给一个n(1=<n<=8000),下面有n行,每行有l,r,color(1=<color<=8000),表示将l~r颜色变为color,最后求各种颜色( ...

  2. ZOJ 1610 Count the Colors (线段树 成段更新)

    题目链接 题意:成段染色,初始为0,每次改变一个区间的颜色,求最后每种颜色分别有多少段.颜色按照从 小到大输出. 分析:改变了代码的风格,因为看了学长的博客.直接用数组,可以只是记录节点的编号,因为节 ...

  3. ZOJ 1610 Count the Colors【题意+线段树区间更新&&单点查询】

    任意门:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1610 Count the Colors Time Limit: 2 ...

  4. ZOJ 1610——Count the Colors——————【线段树区间替换、求不同颜色区间段数】

    Count the Colors Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Subm ...

  5. ZOJ 1610 Count the Colors(线段树,区间覆盖,单点查询)

    Count the Colors Time Limit: 2 Seconds      Memory Limit: 65536 KB Painting some colored segments on ...

  6. ZOJ - 1610 Count the Colors(线段树区间更新,单点查询)

    1.给了每条线段的颜色,存在颜色覆盖,求表面上能够看到的颜色种类以及每种颜色的段数. 2.线段树区间更新,单点查询. 但是有点细节,比如: 输入: 2 0 1 1 2 3 1 输出: 1 2 这种情况 ...

  7. ZOJ 1610 Count the Colors (线段树区间更新)

    题目链接 题意 : 一根木棍,长8000,然后分别在不同的区间涂上不同的颜色,问你最后能够看到多少颜色,然后每个颜色有多少段,颜色大小从头到尾输出. 思路 :线段树区间更新一下,然后标记一下,最后从头 ...

  8. zoj 1610 Count the Colors 线段树区间更新/暴力

    Count the Colors Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/show ...

  9. zoj 1610 Count the Colors

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=610  Count the Colors Time Limit:2000MS   ...

随机推荐

  1. 字符流-缓冲区-自定义myBufferedReader

    public class myBufferedReaderDemo { public static void main(String[] arg) throws IOException{ FileRe ...

  2. ASP.NET跨页面传值技巧[总结]

    个人网站:http://www.51pansou.com .net视频下载:.net视频教程 .net源码下载:.net源码 关于页面传值的方法,我就我个人观点做了些总结,希望对大家有所帮助. 1.  ...

  3. CAD得到范围内实体(网页版)

    主要用到函数说明: IMxDrawSelectionSet::Select 构造选择集.详细说明如下: 参数 说明 [in] MCAD_McSelect Mode 构造选择集方式 [in] VARIA ...

  4. 荷兰国旗问题、快排以及BFPRT算法

    荷兰国旗问题 给定一个数组arr,和一个数num,请把小于num的数放数组的左边,等于num的数放在数组的中间,大于num的数放在数组的右边.要求额外空间复杂度O(1),时间复杂度O(N). 这个问题 ...

  5. extjs动态插入一列

    StdDayWordQuery:function(btn,event){ var form=Ext.getCmp('queryFormSDW'); var userNameORuserCode = f ...

  6. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  7. uva 272 Tex中的引号(Tex Quotes)

    TeX is a typesetting language developed by Donald Knuth. It takes source text together with a few ty ...

  8. java中通用权限管理设计(转)

    原文地址:http://www.cnblogs.com/a7345678/archive/2008/09/25/1298838.html 转自博客园暗夜精灵-鬼才阁 实现业务系统中的用户权限管理 B/ ...

  9. String HDU 5672(双指针)

    String HDU 5672(双指针) 传送门 题意:一个字符串中找到所有拥有不少于k个不同的字符的子串. import java.io.*; import java.util.*; public ...

  10. SqlServer2008必须开启哪些服务

    SQL Server 2008 大概有下面这些服务 SQL Active Directory Helper 服务支持与 Active Directory 的集成SQL Full-text Filter ...