一个n个元素组成的集合中,第K个顺序统计量(Order Statistic)指的是该集合中第K小的元素,我们要讨论的是如何在线性时间(linear time)里找出一个数组的第K个顺序统计量。

一、问题描述

问题:给定一个含有n个元素的无序数组,找出第k小的元素。

  • k = 1 :最小值
  • k = n :最大值
  • k = ⌊(n+1)/2⌋ or ⌈(n+1)/2⌉ :中位数

找最大值或最小值很简单,只需要遍历一次数组并记录下最大值或最小值就可以了。我们在这里要解决的问题是一般性的选择问题。

一种原始的解决方案是,用堆排序或归并排序将输入数据进行排序,然后返回第k个元素。这样在Θ(nlgn)时间内一定可以解决。但是我们希望有更好的方案,最好是线性时间。

二、期望线性时间的解决方案

为了在线性时间内解决这个选择问题,我们使用一个随机的分治算法,即RANDOMIZED-SELECT算法。此算法是使用随机化的快速排序中的随机划分子程序,对输入数组进行随机划分操作,然后判断第k小元素在划分后的哪个区域,对所在区域进行递归划分,最后找到第k小元素。

伪代码

RANDOMIZED-SELECT(A,p,q,i)  // i-th smallest in A[p..q]
if p = q
then return A[p]
r = RANDOMIZED-PARTITION(A, p, q)
k = r-p+1 // A[r] is k-th smallest
if i=k
then return A[r]
if i<k
then return RANDOMIZED-SELECT(A, p, r-1, i)
else
then return RANDOMIZED-SELECT(A, r+1, q, i-k)

这里的RANDOMIZED-PARTITION()是随机版的划分操作(快速排序的分析与优化),可见本算法是一个随机算法,它的期望时间是Θ(n)(假设元素的值是不同的)。

1、Lucky-Case:最好的情况是在正中划分,划分的右边和右边的元素数量相等,但是1/10和9/10的划分也几乎一样好。可以这么说,任何常数比例的划分都和1/2:1/2的划分一样好。这里以1/10和9/10的划分为例,算法运行时间递归式为T(n) <= T(9n/10) + Θ(n),根据主定理得到T(n) <= Θ(n)

2、Unlucky-Case:虽然主元的选取是随机的,但是如果你运气足够差,每次都得到0:n-1的划分,这就是最坏的情况。此时递归式为T(n) = T(n-1) + Θ(n),则时间复杂度为T(n) = Θ(n^2)

3、Expected-Time:期望运行时间为Θ(n),即线性时间。这里就不证明了,证明需要用到指示器随机变量。

C++代码

/*************************************************************************
> File Name: RandomizedSelect.cpp
> Author: SongLee
> E-mail: lisong.shine@qq.com
> Created Time: 2014年06月22日 星期日 20时20分08秒
> Personal Blog: http://songlee24.github.com
************************************************************************/
#include<iostream>
#include<cstdlib> // srand rand
using namespace std; void swap(int &a, int &b)
{
int tmp = a;
a = b;
b = tmp;
} int Partition(int A[], int low, int high)
{
int pivot = A[low];
int i = low;
for(int j=low+1; j<=high; ++j)
{
if(A[j] <= pivot)
{
++i;
swap(A[i], A[j]);
}
}
swap(A[i], A[low]);
return i;
} int Randomized_Partition(int A[], int low, int high)
{
srand(time(NULL));
int i = rand() % (high+1);
swap(A[low], A[i]);
return Partition(A, low, high);
} int Randomized_Select(int A[], int p, int q, int i)
{
if(p == q)
return A[p];
int r = Randomized_Partition(A, p, q);
int k = r-p+1;
if(i == k)
return A[r];
if(i < k)
return Randomized_Select(A, p, r-1, i);
else
return Randomized_Select(A, r+1, q, i-k);
} /* 测试 */
int main()
{
int A[] = {6,10,13,5,8,3,2,11};
int i = 7;
int result = Randomized_Select(A, 0, 7, i);
cout << "The " << i << "th smallest element is " << result << endl;
return 0;
}

三、最坏情况线性时间的解决方案

虽然最坏情况Θ(n2)出现的概率非常非常小,但是不代表它不会出现。这里就介绍一个非同一般的算法,以保证在最坏情况下也能达到线性时间。

这个SELECT算法的基本思想就是要保证对数组的划分是一个好的划分,它通过自己的方法选取主元(pivot),然后将pivot作为参数传递给快速排序的确定性划分操作PARTITION。

基本步骤:

  1. 将输入数组的n个元素划分为n/5(上取整)组,每组5个元素,且至多只有一个组有剩下的n%5个元素组成。

  2. 寻找每个组织中中位数。首先对每组中的元素(至多为5个)进行插入排序,然后从排序后的序列中选择出中位数。

  3. 对第2步中找出的n/5(上取整)个中位数,递归调用SELECT以找出其中位数x。(如果是偶数取下中位数)

  4. 调用PARTITION过程,按照中位数x对输入数组进行划分。确定中位数x的位置k。

  5. 如果i=k,则返回x。否则,如果i < k,则在地区间递归调用SELECT以找出第i小的元素,若干i > k,则在高区找第(i-k)个最小元素。

总结:RANDOMIZED-SELECT和SELECT算法是基于比较的。我们知道,在比较模型中,排序时间不会优于Ω(nlgn)。之所以这里的选择算法达到了线性时间,是因为它们没有使用排序就解决了选择问题。另外,我们没有使用线性时间排序算法(计数排序/桶排序/基数排序),是因为它们要达到线性时间对输入有很高的要求,而这里不需要关于输入的任何假设。

第K顺序统计量的求解的更多相关文章

  1. 第K顺序统计量

    1.第K顺序统计量概念 在一个由n个元素组成的集合中,第k个顺序统计量是该集合中第k小的元素.例如,最小值是第1顺序统计量,最大值是第n顺序统计量. 2.求Top K元素与求第K顺序统计量不同 Top ...

  2. 算法导论第九章 第K顺序统计量

    1.第K顺序统计量概念 在一个由n个元素组成的集合中,第k个顺序统计量是该集合中第k小的元素.例如,最小值是第1顺序统计量,最大值是第n顺序统计量. 2.求Top K元素与求第K顺序统计量不同 Top ...

  3. 华为OJ2051-最小的K个数(Top K问题)

    一.题目描述 描述: 输入n个整数,输出其中最小的k个. 输入: 输入 n 和 k 输入一个整数数组 输出: 输出一个整数数组 样例输入: 5 2 1 3 5 7 2 样例输出: 1 2 二.Top ...

  4. 【k短路&A*算法】BZOJ1975: [Sdoi2010]魔法猪学院

    Description 找出1~k短路的长度.   Solution k短路的求解要用到A*算法 A*算法的启发式函数f(n)=g(n)+h(n) g(n)是状态空间中搜索到n所花的实际代价 h(n) ...

  5. hdu 1588(矩阵好题+递归求解等比数列)

    Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  6. 多目标跟踪笔记一:Finding the Best Set of K Paths Through a Trellis With Application to Multitarget Tracking

    Abstract 本文提出一种寻找K最优路径的方法. k最优路径的定义:1.the sum of the metrics of all k paths in the set is minimized. ...

  7. Wannafly Camp 2020 Day 1I K小数查询 - 分块

    给你一个长度为\(n\)序列\(A\),有\(m\)个操作,操作分为两种: 输入\(x,y,c\),表示对\(i\in[x,y]\),令\(A_{i}=min(A_{i},c)\) 输入\(x,y,k ...

  8. k短路算法

    k短路算法 求解k短路用到了A* 算法,A* ( A star )算法,又称启发式搜索算法,与之相对的,dfs与bfs都成为盲目型搜索:即为带有估价函数的优先队列BFS称为A*算法. 该算法的核心思想 ...

  9. [笔记] $f(i)$ 为 $k$ 次多项式,$\sum_{i=0}^nf(i)\cdot q^i$ 的 $O(k\log k)$ 求法

    \(f(i)\) 为 \(k\) 次多项式,\(\sum_{i=0}^nf(i)\cdot q^i\) 的 \(O(k\log k)\) 求法 令 \(S(n)=\sum_{i=0}^{n-1}f(i ...

随机推荐

  1. oracle插入字符串数据时,字符串中有'单引号

    使用insert into(field1,field2...) values('val1','val2'...)时,若值中有单引号时会报错. 处理方法:判断一下val1,val2中是否含有单引号,若含 ...

  2. 用纯函数式思维在Java8下写的一段奇葩程序

    首先说一下什么是纯函数式.在我的理解,"纯函数式"用一句话就可以描述:Anything is value.--我的理解不一定准确,但我就是这么理解的. 就是所有的东西都是值--没有 ...

  3. 动态设置缩放比例和html字体大小

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8& ...

  4. Linux终端常用快捷操作

    命令或文件名自动补全:在输入命令或文件名的前几个字母后,按Tab键,系统会自动补全或提示补全 上下箭头:使用上下箭头可以回溯之前的命令,增加命令的重用,减少输入工作量 !加之前输入过的命令的前几个字母 ...

  5. oracle查询没有主键的表

    select table_name from user_tables a where not exists (select * from user_constraints b where b.cons ...

  6. 第二节:SQLServer导出-重置sa密码-常用sql语句

    1.SQLServer导出: 点击要导出数据库----->右键(任务)----->生成脚本----->下一步----->下一步(高级)要编写脚本的数据类型---选择架构和数据 ...

  7. C++ 11常见功能介绍:auto,decltype,nullptr,for,lambda

    什么是C++11 C++11是曾经被叫做C++0x,是对目前C++语言的扩展和修正,C++11不仅包含核心语言的新机能,而且扩展了C++的标准程序库(STL),并入了大部分的C++ Technical ...

  8. TWaver GIS制作穹顶之下的雾霾地图

    “我不满意,我不想等待,我也不再推诿,我要站出来做一点什么.我要做的事,就在此时,就在此刻,就在此地,就在此生”.自离职央视后,沉寂许久的知名记者.主持人柴静昨日携个人视频新作 <穹顶之下> ...

  9. 服务器的部署与Web项目的发布

    今天给老师的服务器部署项目,这次是第二次,基于第一次的经验,这次可以说是驾轻就熟. 服务器的系统是Windows Server 2008 R2 (64位) 需要安装的软件是:jdk7.TomCat7. ...

  10. 散列--P1047 校门外的树

    题目描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,-,L,都种有 ...