K大数查询

【问题描述】

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

【输入格式】

第一行N,M

接下来M行,每行形如1 a b c或2 a b c

【输出格式】

输出每个询问的结果

【样例输入】

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

【样例输出】

1
2
1

【样例说明】

第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。

第二个操作 后位置 1的数有 1 、 2 ,位置 2 的数也有 1 、 2 。

第三次询问 位置 1 到位置 1 第 2 大的数 是1 。

第四次询问 位置 1 到位置 1 第 1 大的数是 2 。

第五次询问 位置 1 到位置 2 第 3大的数是 1 。‍

【数据范围】

N,M<=50000,N,M<=50000,a<=b<=N

1操作中abs(c)<=N,2操作中c<=Maxlongint


题解:

我们将询问离线,做整体二分

题目中有负数,那么我们转化一下,将每个数变为n-i+1,输出答案时再变为n-ans+1

对于一个操作1,如果这个操作加入的c是不超过mid的

用线段树在区间内加1,表示此区间小于等于mid的数多了一个,那么将它放置到左区间

否则将其放置到右区间,表示这个操作的贡献在右区间

对于一个操作2,查询在区间内小于等于mid的数的个数tot

如果tot超过k,将其放置到左区间,表示答案在左区间

否则将k减去tot,放置到右区间,表示需要在右区间找k-tot大的数

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
struct S { long long x, y, z, id, flag; } a[], c[];
bool lr[];
long long n, m, tot, maxx = -;
long long sum[], ans[], node[];
void Down(long long k, int l, int r)
{
if(node[k] != )
{
int mi = (l + r) >> ;
node[k * ] += node[k];
node[k * + ] += node[k];
sum[k * ] += node[k] * (mi - l + );
sum[k * + ] += node[k] * (r - mi);
node[k] = ;
}
}
void Inc(int k, int l, int r, int x, int y, int z)
{
if(x <= l && r <= y)
{
sum[k] += z * (r - l + );
node[k] += z;
return;
}
Down(k, l, r);
int mi = (l + r) >> ;
if(mi >= x) Inc(k * , l, mi, x, y, z);
if(mi < y) Inc(k * + , mi + , r, x, y, z);
sum[k] = sum[k * ] + sum[k * + ];
}
long long Sum(long long k, long long l, long long r, long long x, long long y)
{
if(x <= l && r <= y) return sum[k];
Down(k, l, r);
long long mi = (l + r) >> , res = ;
if(mi >= x) res += Sum(k * , l, mi, x, y);
if(mi < y) res += Sum(k * + , mi + , r, x, y);
return res;
}
void Two(long long x, long long y, long long l, long long r)
{
cout<<x<<' '<<y<<' '<<l<<' '<<r<<endl;
long long mi = (l + r) >> ;
if(l == r)
{
for(int i = x; i <= y; ++i)
if(a[i].flag)
ans[a[i].id] = mi;
return;
}
long long temp, s = x;
for(int i = x; i <= y; ++i)
{
if(a[i].flag)
{
temp = Sum(, , * n + , a[i].x, a[i].y);
if(temp < a[i].z)
{
a[i].z -= temp;
lr[i] = false;
}
else
{
++s;
lr[i] = true;
}
}
else
{
if(a[i].z <= mi)
{
Inc(, , * n + , a[i].x, a[i].y, );
++s;
lr[i] = true;
}
else lr[i] = false;
}
}
for(int i = x; i <= y; ++i)
if(!a[i].flag && a[i].z <= mi)
Inc(, , * n + , a[i].x, a[i].y, -);
long long o = x;
for(int i = x; i <= y; ++i)
if(lr[i]) c[o++] = a[i];
else c[s++] = a[i];
for(int i = x; i <= y; ++i) a[i] = c[i];
Two(x, o - , l, mi), Two(o, y, mi + , r);
}
int main()
{
scanf("%lld%lld", &n, &m);
for(int i = ; i <= m; ++i)
{
scanf("%lld%lld%lld%lld", &a[i].flag, &a[i].x, &a[i].y, &a[i].z);
--a[i].flag;
if(!a[i].flag)
{
a[i].z = n - a[i].z + ;
maxx = (a[i].z > maxx) ? a[i].z : maxx;
}
else a[i].id = ++tot;
}
Two(, m, , maxx);
for(int i = ; i <= tot; ++i) printf("%lld\n", n - ans[i] + );
}

K大数查询 BZOJ 3110的更多相关文章

  1. 【ZJOI2013】k大数查询 BZOJ 3110

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  2. BZOJ 3110 K大数查询 | 整体二分

    BZOJ 3110 K大数查询 题面 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个 ...

  3. [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)

    [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...

  4. BZOJ 3110: [Zjoi2013]K大数查询 [树套树]

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6050  Solved: 2007[Submit][Sta ...

  5. 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 &amp; 3236 [Ahoi2013] 作业 题解

    [原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 978  Solved: 476 Descri ...

  6. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

  7. BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )

    BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...

  8. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  9. BZOJ 3110 [Zjoi2013]K大数查询(整体二分)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 11654  Solved: 3505[Submit][St ...

随机推荐

  1. 记录我开发工作中遇到HTTP跨域和OPTION请求的一个坑

    我通过这篇文章把今天工作中遇到的HTTP跨域和OPTION请求的一个坑记录下来. 场景是我需要在部署在域名a的Web应用里用JavaScript去消费一个部署在域名b的服务器上的服务.域名b上的服务也 ...

  2. android stuido ndk 开发

    开发环境: Android studio 1.0.2 ndk android-ndk-r10d-windows-x86_64 ------------------------------------ ...

  3. @ConditionalOnProperty来控制Configuration是否生效

    1. 简介 Spring Boot通过@ConditionalOnProperty来控制Configuration是否生效 2. 说明 @Retention(RetentionPolicy.RUNTI ...

  4. layui 数据table隐藏表头

    $('.layui-table .layui-table-cell > span').css({'font-weight': 'bold'});//表头字体样式 /*$('th').css({' ...

  5. 创建一个文件夹用于写入UTF-8编码的文件

    实现效果: 知识运用: File类的CreateText方法 StreamWriter类的WriteLine方法 实现代码: private void button2_Click(object sen ...

  6. 利用python实现整数转换为任意进制字符串

    假设你想将一个整数转换为一个二进制和十六进制字符串.例如,将整数 10 转换为十进制字符串表示为 10 ,或将其字符串表示为二进制 1010 . 实现 以 2 到 16 之间的任何基数为参数: def ...

  7. 快学UiAutomator UiDevice API 详解

    一.按键使用 返回值 方法名 说明 boolean pressBack() 模拟短按返回back键 boolean pressDPadCenter() 模拟按轨迹球中点按键 boolean press ...

  8. CPP-网络/通信:SOCKET

    客户端实现代码: //引入头文件 #include <WinSock2.h> //客户端创建Socket////////////////////////////////////////// ...

  9. 《offline coolbook》笔记

    https://jakearchibald.com/2014/offline-cookbook/ 在install中对依赖进行缓存 self.addEventListener('install', f ...

  10. css3 filter(滤镜)属性汇总与使用介绍,来源W3C

    实例 修改所有图片的颜色为黑白 (100% 灰度): img { -webkit-filter: grayscale(%); /* Chrome, Safari, Opera */ filter: g ...