求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$

枚举因数

$ans=\sum_{d<=n} F(d) * d$

$F(d)$表示给定范围内两两$\sum_{gcd(i,j)=d} i*j $

令$f(p)=Sum(\lfloor n/p \rfloor) Sum(\lfloor m/p \rfloor) * p^2$

那么 $f(i)=\sum_{i \mid n}F(n)$

反演得到$F(i)=\sum_{i \mid n} \mu(n/i) f(n)$

那么我们代入就得到了

$ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \frac {n}{i*d} \rfloor,\lfloor \frac {m}{i*d} \rfloor)$

然后外面分块一次,里面分块一次

时间复杂度$\Theta (n)$

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define inv 10050505LL
#define maxn 10000005
#define md 20101009LL int mu[maxn],pr[maxn],top=0;
ll ps[maxn];
bool vis[maxn]; int n,m; void init()
{
memset(vis,false,sizeof vis);
mu[1]=1;ps[1]=1;
F(i,2,n)
{
if (!vis[i]) mu[i]=-1,pr[++top]=i;
F(j,1,top)
{
if (pr[j]*i>n) break;
vis[pr[j]*i]=true;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
ps[i]=(ps[i-1]+((ll)mu[i]*i*i))%md;
}
} ll sum(int n,int m)
{
n=((ll)n*(n+1)/2)%md;
m=((ll)m*(m+1)/2)%md;
return ((ll)n*m)%md;
} ll Function(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((sum(n/i,m/i))*(ps[last]-ps[i-1]+md)%md)%md)%md;
}
return ret;
} ll S(int n)
{
return ((1LL+n)*n/2)%md;
} ll solve(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((ll)Function(n/i,m/i))*(S(last)-S(i-1))%md+md)%md;
}
return ret;
} int main()
{
scanf("%d%d",&n,&m);
if (n<m) swap(n,m);
init();
printf("%lld\n",solve(n,m));
}

  

BZOJ 2154 Crash的数字表格 ——莫比乌斯反演的更多相关文章

  1. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  2. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  3. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  4. 【BZOJ】2154: Crash的数字表格 莫比乌斯反演

    [题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...

  5. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  6. Bzoj 2154: Crash的数字表格(积性函数)

    2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...

  7. 【刷题】BZOJ 2154 Crash的数字表格

    Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...

  8. 【bzoj2154】Crash的数字表格 莫比乌斯反演

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...

  9. ●BZOJ 2154 Crash的数字表格

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...

随机推荐

  1. Objective-C 类型转换

    类型转换通常是指变量,从一种类型转换成另外一种类型.例如将一个long类型转换成int类型,变量转换通常 用下面的方式: (type_name) expression 在Objective-C中,我们 ...

  2. div+css 布局经验 - 最简单的 = 最不变形的(原创技巧)

    站酷几年了 一直饱受其恩泽 尤为感激 一直想奉献些什么 但是苦于水平 苦于奔波 今天静下心来 为大家奉献下 自己的div+css 经验 ,以下观点只代表 深海个人立场 希望为初学者提供一条" ...

  3. ConCurrent in Practice小记 (4)

    ConCurrent in Practice小记 (4) Executors Callable && Future <T> Callable:此接口有一个call()方法. ...

  4. shell 简单脚本 2

    #!/bin/bash source /etc/profile APPLICATIONS_HOME="/cpic/cpicapp/cpic_analy/jars" APPLICAT ...

  5. vue watch 监听

    1.普通的watch data() { return { frontPoints: 0 } }, watch: { frontPoints(newValue, oldValue) { console. ...

  6. canvas 在视频中的用法

    <!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. vue 中 $set 的使用

    在我们使用vue进行开发的过程中,可能会遇到一种情况:当生成vue实例后,当再次给数据赋值时,有时候并不会自动更新到视图上去: <!DOCTYPE html> <html> & ...

  8. 五、Pandas玩转数据

    Series的简单运算 import numpy as np import pandas as pd s1=pd.Series([1,2,3],index=['A','B','C']) print(s ...

  9. MySQL 实时监控日志

    简单的梳理一下为什么要写这边文章,主要是学了ORM之后,发现通过ORM插入数据真的很方便,但是通过ORM生成的SQL语句又是怎么写的呢,百思不得姐.于是就找到了这个办法 首先查看一下查看MySQL 日 ...

  10. ios之UIImageView

    UIImageView,顾名思义,是用来放置图片的.使用Interface Builder设计界面时,当然可以直接将控件拖进去并设置相关属性,这就不说了,这里讲的是用代码. 1.创建一个UIImage ...