求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$

枚举因数

$ans=\sum_{d<=n} F(d) * d$

$F(d)$表示给定范围内两两$\sum_{gcd(i,j)=d} i*j $

令$f(p)=Sum(\lfloor n/p \rfloor) Sum(\lfloor m/p \rfloor) * p^2$

那么 $f(i)=\sum_{i \mid n}F(n)$

反演得到$F(i)=\sum_{i \mid n} \mu(n/i) f(n)$

那么我们代入就得到了

$ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \frac {n}{i*d} \rfloor,\lfloor \frac {m}{i*d} \rfloor)$

然后外面分块一次,里面分块一次

时间复杂度$\Theta (n)$

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define inv 10050505LL
#define maxn 10000005
#define md 20101009LL int mu[maxn],pr[maxn],top=0;
ll ps[maxn];
bool vis[maxn]; int n,m; void init()
{
memset(vis,false,sizeof vis);
mu[1]=1;ps[1]=1;
F(i,2,n)
{
if (!vis[i]) mu[i]=-1,pr[++top]=i;
F(j,1,top)
{
if (pr[j]*i>n) break;
vis[pr[j]*i]=true;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
ps[i]=(ps[i-1]+((ll)mu[i]*i*i))%md;
}
} ll sum(int n,int m)
{
n=((ll)n*(n+1)/2)%md;
m=((ll)m*(m+1)/2)%md;
return ((ll)n*m)%md;
} ll Function(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((sum(n/i,m/i))*(ps[last]-ps[i-1]+md)%md)%md)%md;
}
return ret;
} ll S(int n)
{
return ((1LL+n)*n/2)%md;
} ll solve(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((ll)Function(n/i,m/i))*(S(last)-S(i-1))%md+md)%md;
}
return ret;
} int main()
{
scanf("%d%d",&n,&m);
if (n<m) swap(n,m);
init();
printf("%lld\n",solve(n,m));
}

  

BZOJ 2154 Crash的数字表格 ——莫比乌斯反演的更多相关文章

  1. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  2. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  3. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  4. 【BZOJ】2154: Crash的数字表格 莫比乌斯反演

    [题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...

  5. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  6. Bzoj 2154: Crash的数字表格(积性函数)

    2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...

  7. 【刷题】BZOJ 2154 Crash的数字表格

    Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...

  8. 【bzoj2154】Crash的数字表格 莫比乌斯反演

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...

  9. ●BZOJ 2154 Crash的数字表格

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...

随机推荐

  1. 基于eclipse搭建android开发环境-win7 32bit

    基于eclipse搭建android开发环境-win7 32bit 前言:在使用朋友已搭建的Android开发环境时,发现朋友的开发环境版本较低且在update SDk时失败,便决定根据网上文章提示从 ...

  2. 增加和减少mongodb复制集中的节点

    MongoDB Replica Sets不仅提供高可用性的解决方案,同时也提供负载均衡的解决方案,增减 Replica Sets节点在实际应用中非常普通.例如,当应用的读压力暴增时,3台节点的环境已不 ...

  3. flex常用属性

    <1>align-items: 垂直方向的对齐方式 align-items: stretch(拉伸,布满父容器) | center(垂直居中) | flex-start(上对齐) | fl ...

  4. 判断NumLock键和CapsLock键是否被锁定

    实现效果: 知识运用: AIP函数GetKeyState //针对已处理过的按键 在最近一次输入信息时 判断指定虚拟键的状态 intkey:预测试的虚拟键键码 实现代码: [DllImport(&qu ...

  5. w3 parse a url

     最新链接:https://www.w3.org/TR/html53/ 2.6 URLs — HTML5 li, dd li { margin: 1em 0; } dt, dfn { font-wei ...

  6. kubernetes添加不了google apt-key

    转自icepoint的博客 key来源 我的百度云盘 密码:v3wo 下载kube_apt_key.gpg到本地,上传到服务器后执行下面的命令 apt-get update && ap ...

  7. bootstrap下拉菜单(Dropdowns)

    本章将重点讲解bootstrap下拉菜单(Dropdowns),下拉菜单是可切换的,是以列表格式显示链接的上下文菜单. <!DOCTYPE html><html><hea ...

  8. 【Java_基础】Java内部类详解

    1.四种内部类 java中的四种内部类:成员内部类.静态内部类.局部内部类和匿名内部类.其中匿名内部类用到的最多. 1.1.成员内部类 若一个类定义在另一个类的内部作为实例成员,我们把这个作为实例成员 ...

  9. 纯 CSS 创作一个小球绕着圆环盘旋的动画

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/gKxyWo 可交互视频 ...

  10. link与@import导入css样式区别

    XML/HTML代码<link rel="stylesheet" rev="stylesheet" href="CSS文件" type ...