题目链接

  一开始想到这可能能用矩阵优化,但以为暴力就能卡过……T成二十分

  首先我们回顾一下我们的暴力转移方程

  用f[i][j][0/1]表示在i时刻,j点,1不爆炸,0已爆炸的方案数,那么f[i][j][0]=f[i-1][j][0]+f[i-1][j][1],f[i][j][1]=f[i-1][j][1]+f[i-1][k][1](其中k表示与j相邻的点)。

  然后我们看f[i][j][1]=f[i-1][j][1]+f[i-1][k][1]这个式子

  如果设定j和j相连,就化简为f[i][j][1]=f[i-1][k][1]

  然后就可以用矩阵乘法啦

  考虑到f[i][j][0]的求法,发现这是一个关于f[i-1][j][1]的和

  而我们发现f[i-1][j][1]是一串矩阵等比数列

  于是应用等比数列求和公式

  

#include<algorithm>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#define mod 2017 inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} int n,m; struct Matrix{
long long s[][];
Matrix(){memset(s,,sizeof(s)); }
Matrix operator *(const Matrix &a){
Matrix ans;
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
for(int k=;k<=n;++k)
ans.s[i][j]=(ans.s[i][j]+(s[i][k]*a.s[k][j])%mod)%mod;
return ans;
}
Matrix operator +(const Matrix &a){
Matrix ans;
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
ans.s[i][j]=(s[i][j]+a.s[i][j])%mod;
return ans;
}
}; Matrix Pow(Matrix x,int p){
Matrix ans;
for(int i=;i<=n;++i) ans.s[i][i]=;
while(p){
if(p&) ans=ans*x;
x=x*x;
p>>=;
}
return ans;
} Matrix Sum(Matrix x,int p){
Matrix ans;
if(!p) return ans;
for(int i=;i<=n;++i) ans.s[i][i]=;
ans=ans+Pow(x,p>>); ans=ans*Sum(x,p>>);
if(p&) ans=ans+Pow(x,p);
return ans;
} int q[][];
Matrix Start;
int ans; int main(){
n=read(),m=read();
for(int i=;i<=m;++i){
int from=read(),to=read();
q[from][to]=q[to][from]=;
}
for(int i=;i<=n;++i) q[i][i]=;
for(int i=;i<=n;++i)
for(int j=;j<=n;++j) Start.s[i][j]=q[i][j];
int t=read();
Matrix now; now=Pow(Start,t);
for(int i=;i<=n;++i) ans=(ans+now.s[i][])%mod;
Matrix sum; sum=Sum(Start,t -);
for(int i=;i<=n;++i) sum.s[i][i]=(sum.s[i][i]+)%mod;
for(int i=;i<=n;++i) ans=(ans+sum.s[i][])%mod;
printf("%d",ans);
return ;
}

【Luogu】P3758可乐(矩阵优化DP)的更多相关文章

  1. $[TJOI2017]$ 可乐 矩阵优化$dp$

    \(Sol\) 设\(f_i\)为到第\(i\)秒的方案数,显然\(f_i=\)在第\(i\)秒前爆炸的方案数+在第\(i\)秒爆炸的方案数+在第\(i\)秒停下的方案数+在第\(i\)秒走向下一个城 ...

  2. 矩阵优化dp

    链接:https://www.luogu.org/problemnew/show/P1939 题解: 矩阵优化dp模板题 搞清楚矩阵是怎么乘的构造一下矩阵就很简单了 代码: #include < ...

  3. bzoj 3120 矩阵优化DP

    我的第一道需要程序建矩阵的矩阵优化DP. 题目可以将不同的p分开处理. 对于p==0 || p==1 直接是0或1 对于p>1,就要DP了.这里以p==3为例: 设dp[i][s1][s2][r ...

  4. HDU - 2294: Pendant(矩阵优化DP&前缀和)

    On Saint Valentine's Day, Alex imagined to present a special pendant to his girl friend made by K ki ...

  5. [六省联考2017]组合数问题 (矩阵优化$dp$)

    题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...

  6. 矩阵优化DP类问题应用向小结

    前言 本篇强调应用,矩阵的基本知识有所省略(也许会写篇基础向...). 思想及原理 为什么Oier们能够想到用矩阵来加速DP呢?做了一些DP题之后,我们会发现,有时候DP两两状态之间的转移是定向的,也 ...

  7. [Sdoi2017]序列计数 矩阵优化dp

    题目 https://www.lydsy.com/JudgeOnline/problem.php?id=4818 思路 先考虑没有质数限制 dp是在同余系下的,所以\(f[i][j]\)表示前i个点, ...

  8. bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串. 为了dp,需要记录 ...

  9. 洛谷P3193 GT考试 kmp+矩阵优化dp

    题意 求\(N\)位数字序列(可以有前导0)中不出现某\(M\)位子串的个数,模\(K\). \(N<=10^9,M<=20,K<=1000\) 分析 设\(dp[i][j]\)表示 ...

随机推荐

  1. 利用nodejs读取数据库数据生成树结构的json数据

    在做后台管理界面的时候,几乎少不了的一个结构就是树形结构,用来做菜单导航: 那么,最希望的就是树结构的所有数据都是读取的数据库,而不是直接代码当中写死,那我们就一步一步来看: 一,建表 字段通常包括: ...

  2. DRP项目

    DRP(distribution resource planning)分销资源计划是管理企业的分销网络的系统,目的是使企业具有对订单和供货具有快速反应和持续补充库存的能力.解决了随着企业销售规模的逐渐 ...

  3. Win7下vc++6.0打开项目出现问题的解决方案

    Win7下vc++6.0打开项目出现Microsoft(R) Developer Studio以及Unable to register this add-in because its DLLRegis ...

  4. 网络大牛如何回答Chrome的15个刁钻面试题?

    (内容来自网络整理) Google的面试题在刁钻古怪方面相当出名,甚至已经有些被神化的味道.这里整理出15道Google面试题并一一给出了网络大牛的答案,其中不少都是流传很广的. 第1题:让你清洗西雅 ...

  5. UVA 11374 Airport Express (最短路)

    题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...

  6. LVM逻辑分区的优缺点与步骤

    一.LVM简介 1. 什么是LVM? LVM是 Logical Volume Manager(逻辑卷管理)的简写 2. 为什么使用LVM? LVM通常用于装备大量磁盘的系统,但它同样适于仅有一.两块硬 ...

  7. Java Miniui实现批量上传文件demo 201906221520

    可能需要的jar包: 需要miniui(类似easyui). Test2019062201.jsp <%@ page language="java" contentType= ...

  8. C-基础:详解sizeof和strlen,以及strstr

    sizeof和strlen (string.h) 先看几个例子(sizeof和strlen之间的区别):  (1) 对于一个指针, char* ss ="0123456789"; ...

  9. CPP-基础:char、BYTE、byte

    一,C++语言的内建类型中没“BYTE”这么个类型.BYTE是WINDOWS Platform SDK中windef.h里面定义的:typedef unsigned char BYTE; 二,char ...

  10. 几句话总结一个算法之RNN、LSTM和GRU

    RNN 一般神经网络隐层的计算是h=g(w * x),其中g是激活函数,相比于一般神经网络,RNN需要考虑之前序列的信息,因此它的隐藏h的计算除了当前输入还要考虑上一个状态的隐藏,h=g(w*x+w' ...