bzoj5333: [Sdoi2018]荣誉称号
请不要去改题目给的输入,不然你会wa穿。。。
这么故弄玄虚的题目,肯定要先转换问题
看到这个不断的除2想起别人家的线段树的写法。。。x的两个孩子是x<<1和x<<1|1
然后问题就转换成给你一棵树,你可以增加树的权值,要让树上每一条长度为k+1的链上的点权和%m都等于0
先%m把取值范围降到[0,m-1]
观察一下性质,假如通过加权确定了根节点的点权=d,就确定了所有和它距离为k+1的点的点权必须也要变成d
据此我们把点分成k+1组,那是不是每一组的点权都要变成相同的呢?
然而并不,正确的答案应该是这棵树上面的前2^(k+1)-1个点,它们的点权是不受约束的,然后它们覆盖了下面的所有点
我们可以处理出一个c数组,表示第i组全部改成j的花费
然后就是裸的树包了
然而暴力处理c只能得到70分的好成绩,能不能再优化一下呢
我想法是上一个线段树,然而其实可以先把ci,0处理出来,然后DP出其他的值
ci,j=ci,j-1+∑bk(k属第i组) - m*∑u(u属第i组且初始值为u)bu
两个∑都是可以预处理的,所以是O(2^k*m)的复杂度
背包O(2^k*m^2)没什么毛病
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL; int n,k,m,Bin[];LL a[],b[];
unsigned int SA, SB, SC;int p, A, B;
unsigned int rng61(){
SA ^= SA << ;
SA ^= SA >> ;
SA ^= SA << ;
unsigned int t = SA;
SA = SB;
SB = SC;
SC ^= t ^ SA;
return SC;
}
void gen(){
scanf("%d%d%d%d%u%u%u%d%d", &n, &k, &m, &p, &SA, &SB, &SC, &A, &B);
for(int i = ; i <= p; i++)scanf("%lld%lld", &a[i], &b[i]);
for(int i = p + ; i <= n; i++){
a[i] = LL(rng61() % A + );
b[i] = LL(rng61() % B + );
}
} //-----------------------------scanf----------------------------------------- LL c[][],sum[];//和i点合并,一起变成j的费用cij
void dfs(int x)
{
if(x>n)return ; int f=x;
while(f/Bin[k]>)f/=Bin[k]; if(a[x]!=)
{
if(f==)
{
int t;t++;
}
c[f][]+=(LL(m)-a[x])*b[x];
c[f][a[x]]-=b[x]*m;
}
sum[f]+=b[x]; dfs(x<<);
dfs(x<<|);
}
void getc()
{
for(int i=;i<Bin[k];i++)
for(int j=;j<m;j++)
c[i][j]+=c[i][j-]+sum[i];
} //------------------------------------init---------------------------------------------------- LL f[][];
void treeDP(int x)
{
if(x*>=Bin[k])
{
memcpy(f[x],c[x],sizeof(f[x]));
return ;
} int lc=x<<,rc=x<<|;
treeDP(x<<);
treeDP(x<<|); for(int i=;i<m;i++)
for(int j=;j<m;j++)
{
int u=(i-j+m)%m;
f[x][i]=min(f[x][i],f[lc][u]+f[rc][u]+c[x][j]);
}
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
Bin[]=;for(int i=;i<=;i++)Bin[i]=Bin[i-]*;
int T;
scanf("%d",&T);
while(T--)
{
gen();k++;
for(int i=;i<=n;i++)a[i]%=m;
memset(c,,sizeof(c));
memset(sum,,sizeof(sum));
dfs();
getc(); memset(f,,sizeof(f));
treeDP();
printf("%lld\n",f[][]);
}
return ;
}
bzoj5333: [Sdoi2018]荣誉称号的更多相关文章
- [loj#2566][BZOJ5333] [Sdoi2018]荣誉称号 树形dp
#2566. 「SDOI2018」荣誉称号 休闲游戏玩家小 Q 不仅在算法竞赛方面取得了优异的成绩,还在一款收集钻石的游戏中排名很高. 这款游戏一共有 n 种不同类别的钻石,编号依次为 1 到 n ...
- BZOJ5333 [Sdoi2018]荣誉称号 【差分 + 树形dp】
题目链接 BZOJ5333 题解 看到式子,立即想到二叉树上一个点及其\(k\)个父亲权值和[如果有的话]模\(m\)意义下为\(0\) 考虑如何满足条件 我们假设\(1\)号为第\(0\)层 那么我 ...
- 【BZOJ5333】荣誉称号(动态规划)
[BZOJ5333]荣誉称号(动态规划) 题面 BZOJ 洛谷 题解 今天早上贱狗老师讲的.然而我还是不会. 只好照着\(zsy\)代码大力理解一波. 首先观察等式,如果比较熟悉线段树,会发现就是线段 ...
- BZOJ5333:[SDOI2018]荣誉称号——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5333 https://www.luogu.org/problemnew/show/P4620 题意 ...
- [SDOI2018]荣誉称号
题解: 并不需要什么算法 首先我们随便画一画就会发现 能画出一颗满二叉树 然后要满足每个点从上往下的路径和都相同(%m意义下) 一个点上可能对应了多个点 然后这样我们可以暴力dp $2^k*m^2+n ...
- SDOI2018
SD的题有点反人类啊... d1t1[SDOI2018]物理实验 感觉比较好想但不太好写,写了一半弃了 d1t2[SDOI2018]战略游戏 建出圆方树,每次建虚树,答案就是虚树上的原点个数减去询问的 ...
- SDOI2018:荣誉称号
题解: https://files.cnblogs.com/files/clrs97/title-solution.pdf Code: #include<cstdio> #include& ...
- [SDOI2018] 旧试题
推狮子的部分 \[ \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sigma(ijk) =\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_ ...
- 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)
[BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...
随机推荐
- python编程之API入门: (二)python3中使用新浪微博API
回顾API使用的流程 通过百度地图API的使用,我理解API调用的一般流程为:生成API规定格式的url->通过urllib读取url中数据->对json格式的数据进行解析.下一步,开始研 ...
- CSS3 pointer-events:none 让你摆脱事件的烦恼
以前没遇到这个属性,在一个偶然的博文下发现该属性真的好用,你是否遇到过写鼠标移入显示文本的效果时,鼠标在元素内的每一次移动都会造成要显示文本的闪烁或是突然的消失?只要在被控制的元素中加上这个属性完美解 ...
- Cake(凸包+区间DP)
You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into ...
- Android View加载圆形图片且同时绘制圆形图片的外部边缘边线及边框:LayerDrawable实现
Android View加载圆形图片且同时绘制圆形图片的外部边缘边线及边框:LayerDrawable实现 LayerDrawable实现的结果和附录文章1,2,3中的layer-list一致. ...
- bzoj 1702 贪心,前缀和
[Usaco2007 Mar]Gold Balanced Lineup 平衡的队列 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 807 Solved: ...
- [NOIP2001] 提高组 洛谷P1027 Car的旅行路线
题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于一个 矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第I个城市中高速铁路了的单 ...
- 【BZOJ2982】combination(Lucas定理)
题意:求C(n,m) n,m<=200000000 思路:c(n,m)=c(n mod mo,m mod mo)*c(n div mo,m div mo) mod mo (n>=mo或m& ...
- 9.6——string类型
string: getline(is,s):从输入流is读入到字符串s中 s1+s2:将两个字符串连接起来 构造string一些方法: 1)string s(cp,n):将s初始化为cp所指的n个字符 ...
- 转: ORACLE存储过程笔记2----运算符和表达式
运算符和表达式 关系运算 =等于<>,!=不等于<小于>大于<=小于等于>=大于等于 一般运算 +加-减*乘/除:=赋值号=>关系号. ...
- java获得文件的最后修改时间
原文:http://www.open-open.com/code/view/1453190044980 java的File类的lastModified()方法可以返回文件的最后修改时间: String ...