请不要去改题目给的输入,不然你会wa穿。。。

这么故弄玄虚的题目,肯定要先转换问题

看到这个不断的除2想起别人家的线段树的写法。。。x的两个孩子是x<<1和x<<1|1

然后问题就转换成给你一棵树,你可以增加树的权值,要让树上每一条长度为k+1的链上的点权和%m都等于0

先%m把取值范围降到[0,m-1]

观察一下性质,假如通过加权确定了根节点的点权=d,就确定了所有和它距离为k+1的点的点权必须也要变成d

据此我们把点分成k+1组,那是不是每一组的点权都要变成相同的呢?

然而并不,正确的答案应该是这棵树上面的前2^(k+1)-1个点,它们的点权是不受约束的,然后它们覆盖了下面的所有点

我们可以处理出一个c数组,表示第i组全部改成j的花费

然后就是裸的树包了

然而暴力处理c只能得到70分的好成绩,能不能再优化一下呢

我想法是上一个线段树,然而其实可以先把ci,0处理出来,然后DP出其他的值

ci,j=ci,j-1+∑bk(k属第i组)  - m*∑u(u属第i组且初始值为u)bu

两个∑都是可以预处理的,所以是O(2^k*m)的复杂度

背包O(2^k*m^2)没什么毛病

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL; int n,k,m,Bin[];LL a[],b[];
unsigned int SA, SB, SC;int p, A, B;
unsigned int rng61(){
SA ^= SA << ;
SA ^= SA >> ;
SA ^= SA << ;
unsigned int t = SA;
SA = SB;
SB = SC;
SC ^= t ^ SA;
return SC;
}
void gen(){
scanf("%d%d%d%d%u%u%u%d%d", &n, &k, &m, &p, &SA, &SB, &SC, &A, &B);
for(int i = ; i <= p; i++)scanf("%lld%lld", &a[i], &b[i]);
for(int i = p + ; i <= n; i++){
a[i] = LL(rng61() % A + );
b[i] = LL(rng61() % B + );
}
} //-----------------------------scanf----------------------------------------- LL c[][],sum[];//和i点合并,一起变成j的费用cij
void dfs(int x)
{
if(x>n)return ; int f=x;
while(f/Bin[k]>)f/=Bin[k]; if(a[x]!=)
{
if(f==)
{
int t;t++;
}
c[f][]+=(LL(m)-a[x])*b[x];
c[f][a[x]]-=b[x]*m;
}
sum[f]+=b[x]; dfs(x<<);
dfs(x<<|);
}
void getc()
{
for(int i=;i<Bin[k];i++)
for(int j=;j<m;j++)
c[i][j]+=c[i][j-]+sum[i];
} //------------------------------------init---------------------------------------------------- LL f[][];
void treeDP(int x)
{
if(x*>=Bin[k])
{
memcpy(f[x],c[x],sizeof(f[x]));
return ;
} int lc=x<<,rc=x<<|;
treeDP(x<<);
treeDP(x<<|); for(int i=;i<m;i++)
for(int j=;j<m;j++)
{
int u=(i-j+m)%m;
f[x][i]=min(f[x][i],f[lc][u]+f[rc][u]+c[x][j]);
}
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
Bin[]=;for(int i=;i<=;i++)Bin[i]=Bin[i-]*;
int T;
scanf("%d",&T);
while(T--)
{
gen();k++;
for(int i=;i<=n;i++)a[i]%=m;
memset(c,,sizeof(c));
memset(sum,,sizeof(sum));
dfs();
getc(); memset(f,,sizeof(f));
treeDP();
printf("%lld\n",f[][]);
}
return ;
}

bzoj5333: [Sdoi2018]荣誉称号的更多相关文章

  1. [loj#2566][BZOJ5333] [Sdoi2018]荣誉称号 树形dp

    #2566. 「SDOI2018」荣誉称号   休闲游戏玩家小 Q 不仅在算法竞赛方面取得了优异的成绩,还在一款收集钻石的游戏中排名很高. 这款游戏一共有 n 种不同类别的钻石,编号依次为 1 到 n ...

  2. BZOJ5333 [Sdoi2018]荣誉称号 【差分 + 树形dp】

    题目链接 BZOJ5333 题解 看到式子,立即想到二叉树上一个点及其\(k\)个父亲权值和[如果有的话]模\(m\)意义下为\(0\) 考虑如何满足条件 我们假设\(1\)号为第\(0\)层 那么我 ...

  3. 【BZOJ5333】荣誉称号(动态规划)

    [BZOJ5333]荣誉称号(动态规划) 题面 BZOJ 洛谷 题解 今天早上贱狗老师讲的.然而我还是不会. 只好照着\(zsy\)代码大力理解一波. 首先观察等式,如果比较熟悉线段树,会发现就是线段 ...

  4. BZOJ5333:[SDOI2018]荣誉称号——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5333 https://www.luogu.org/problemnew/show/P4620 题意 ...

  5. [SDOI2018]荣誉称号

    题解: 并不需要什么算法 首先我们随便画一画就会发现 能画出一颗满二叉树 然后要满足每个点从上往下的路径和都相同(%m意义下) 一个点上可能对应了多个点 然后这样我们可以暴力dp $2^k*m^2+n ...

  6. SDOI2018

    SD的题有点反人类啊... d1t1[SDOI2018]物理实验 感觉比较好想但不太好写,写了一半弃了 d1t2[SDOI2018]战略游戏 建出圆方树,每次建虚树,答案就是虚树上的原点个数减去询问的 ...

  7. SDOI2018:荣誉称号

    题解: https://files.cnblogs.com/files/clrs97/title-solution.pdf Code: #include<cstdio> #include& ...

  8. [SDOI2018] 旧试题

    推狮子的部分 \[ \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sigma(ijk) =\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_ ...

  9. 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)

    [BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...

随机推荐

  1. PS学习笔记(01)

    [1]PS,文件-脚本-删除所有的空图层.   [2]设计师与美工的区别? 设计在于有思路了再去找素材, 美工在于有素材后再去设计 (思路是在大量的设计上,才累计出来的.)   [3]如何知道一张图片 ...

  2. 查看linux ubuntu版本

    ubuntu版本: lsb_release -a  linux版本: uname -a proc目录下记录的当前系统运行的各种数据,version记录的版本信息直接可以通过cat查看到. 使用命令:c ...

  3. springmvc ajax传值详解

  4. [转]maven编译时出现读取XXX时出错invalid LOC header (bad signature)

    maven编译时出现读取XXX时出错invalid LOC header (bad signature) 一.发现问题右击pom.xml,run as —> maven install,会看到c ...

  5. POJ 3620 Avoid The Lakes

    http://poj.org/problem?id=3620 DFS 从任意一个lake出发 重置联通的lake 并且记录 更新ans #include <iostream> #inclu ...

  6. LCA 在线倍增法 求最近公共祖先

    第一步:建树  这个就不说了 第二部:分为两步  分别是深度预处理和祖先DP预处理 DP预处理: int i,j; ;(<<j)<n;j++) ;i<n;++i) ) fa[i ...

  7. CodeForces 598C Nearest vectors

    这题对精度要求很高.用atan2吧... #include<iostream> #include<cstring> #include<cmath> #include ...

  8. 洛谷——P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  9. [Bzoj1051][HAOI2006]受欢迎的牛(缩环)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 6676  Solved: 3502[Submit][Sta ...

  10. 2017CodeM初赛B场

    A.合并字符串价值(loj6174) 分析: 普通暴力:枚举两个分界线,那么ans=Σmin(Al(c)+Bl(c),Ar(c)+Br(c)),这样是O(n^2),会TLE 考虑枚举a的分界线,b的答 ...