启发式合并CodeForces - 1009F
E - Dominant Indices CodeForces - 1009F
You are given a rooted undirected tree consisting of nn vertices. Vertex 11 is the root.
Let's denote a depth array of vertex xx as an infinite sequence [dx,0,dx,1,dx,2,…][dx,0,dx,1,dx,2,…], where dx,idx,i is the number of vertices yy such that both conditions hold:
- xx is an ancestor of yy;
- the simple path from xx to yy traverses exactly ii edges.
The dominant index of a depth array of vertex xx (or, shortly, the dominant index of vertex xx) is an index jj such that:
- for every k<jk<j, dx,k<dx,jdx,k<dx,j;
- for every k>jk>j, dx,k≤dx,jdx,k≤dx,j.
For every vertex in the tree calculate its dominant index.
Input
The first line contains one integer nn (1≤n≤1061≤n≤106) — the number of vertices in a tree.
Then n−1n−1 lines follow, each containing two integers xx and yy (1≤x,y≤n1≤x,y≤n, x≠yx≠y). This line denotes an edge of the tree.
It is guaranteed that these edges form a tree.
Output
Output nn numbers. ii-th number should be equal to the dominant index of vertex ii.
Examples
4
1 2
2 3
3 4
0
0
0
0
4
1 2
1 3
1 4
1
0
0
0
4
1 2
2 3
2 4
2
1
0
0 题意:对于每一个节点x,可以定义一个深度数组[dx0,dx1,dx2,…dxh],代表着以节点x为根往下计算,深度为h的那层的节点的数量。
对于每一个节点x,我们可以从深度数组中,选择一个主要索引下标j,作为他的代表。这个dj需要满足以下条件,他是所有dh中,最大的那个,如果有多个dh是一样的,都是最大的,那么选择j(即深度)最小的那个。
每层节点数的众数。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
const int maxn=1e6+;
int n,m;
int mx,big,id;
int deep[maxn],si[maxn],hson[maxn],cnt[maxn],ans[maxn];
vector<int>G[maxn]; void findhson(int x,int fa,int dep)//找到所有的重儿子
{
si[x]=;
deep[x]=dep;
int len=G[x].size();
for(int i=;i<len;i++)
{
int t=G[x][i];
if(t!=fa)
{
findhson(t,x,dep+);
si[x]+=si[t];
deep[t]=deep[x]+;
if(si[t]>si[hson[x]])
hson[x]=t;
}
}
}
void cal(int x,int fa,int val)
{
cnt[deep[x]]+=val;
if(cnt[deep[x]]>mx)
{
id=deep[x];
mx=cnt[deep[x]];
}
else if(cnt[deep[x]]==mx && deep[x]<id)
id=deep[x];
int len=G[x].size();
for(int i=;i<len;i++)
{
int t=G[x][i];
if(t!=fa && t!=big)
cal(t,x,val);
}
}
void dfs(int x,int fa,int flag)
{
int len=G[x].size();
for(int i=;i<len;i++)
{
int t=G[x][i];
if(t!=fa && t!=hson[x])
dfs(t,x,);
}
if(hson[x])
{
dfs(hson[x],x,);
big=hson[x];
}
cal(x,fa,);
big=;
ans[x]=id;
if(!flag)
{
cal(x,fa,-);
mx=;id=;
}
}
int main()
{
big=;mx=;id=;
scanf("%d",&n);
int x,y;
for(int i=;i<n;i++)
{
scanf("%d %d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
findhson(,,);
dfs(,,);
for(int i=;i<=n;i++)
printf("%d\n",ans[i]-deep[i]);
return ;
}
启发式合并CodeForces - 1009F的更多相关文章
- 启发式合并 CodeForces - 600E
启发式合并最重要的思想就是指的是每次将小集合拷贝合并至大集合.考虑每个元素的合并开销.对于合并次数最多的那个元素来说,它每合并一次,所在集合的规模扩大两倍,最多只会合并 logN 次,因而对于所有元素 ...
- Educational Codeforces Round 2 E. Lomsat gelral 启发式合并map
E. Lomsat gelral Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/600/prob ...
- CodeForces 958F3 Lightsabers (hard) 启发式合并/分治 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8835443.html 题目传送门 - CodeForces 958F3 题意 有$n$个球,球有$m$种颜色,分 ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)
codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...
- codeforces#1166F. Vicky's Delivery (Service并查集+启发式合并)
题目链接: https://codeforces.com/contest/1166/problem/F 题意: 给出节点数为$n$,边数为$m$的图,保证每个点对都是互连的 定义彩虹路:这条路经过$k ...
- Codeforces 1455G - Forbidden Value(map 启发式合并+DP)
Codeforces 题面传送门 & 洛谷题面传送门 首先这个 if 与 end 配对的结构显然形成一个树形结构,考虑把这棵树建出来,于是这个程序的结构就变为,对树进行一遍 DFS,到达某个节 ...
- codeforces 375D . Tree and Queries 启发式合并 || dfs序+莫队
题目链接 一个n个节点的树, 每一个节点有一个颜色, 1是根节点. m个询问, 每个询问给出u, k. 输出u的子树中出现次数大于等于k的颜色的数量. 启发式合并, 先将输入读进来, 然后dfs完一个 ...
- Codeforces 965E Short Code 启发式合并 (看题解)
Short Code 我的想法是建出字典树, 然后让后面节点最多的点优先向上移到不能移为止, 然后gg. 正确做法是对于当前的节点如果没有被占, 那么从它的子树中选出一个深度最大的点换到当前位置. 用 ...
- Codeforces - 600E 树上启发式合并
题意:求每一个子树存在最多颜色的颜色代号和(可重复) 本题是离线统计操作,因此可以直接合并重儿子已达到\(O(nlogn)\)的复杂度 PS.不知道什么是启发式合并的可以这样感受一下:进行树链剖分,分 ...
随机推荐
- logback 使用详解 (转)
详细整理了logback常用配置, 不是官网手册的翻译版,而是使用总结,旨在更快更透彻的理解其配置 logback 常用配置详解(序)logback 简介 logback 常用配置详解(一)<c ...
- WinHTTrack
看过<大湿教我写.net通用权限框架(1)之菜单导航篇>之后发生的事 http://www.cnblogs.com/wolf-sun/p/3436585.html 用此工具下载别人整站的图 ...
- An internal error occurred during: "Launching MVC on Tomcat 6.x". java.lang.NullPointerException
有的时候打开Myeclispe莫名奇妙的就出现了这样的问题: An internal error occurred during: "Launching MVC on Tomcat 6.x ...
- (数论 欧拉筛法)51NOD 1181 质数中的质数(质数筛法)
如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数.例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数.现在给出一个数N,求>=N的最小的质数中的质数是多少(可以考虑用 ...
- 使用python计算softmax函数
softmax计算公式: Softmax是机器学习中一个非常重要的工具,他可以兼容 logistics 算法.可以独立作为机器学习的模型进行建模训练.还可 ...
- c语言程序设计案例教程(第2版)笔记(一)—零散、输入输出、最小公倍数、选择排序、冒泡排序
零散知识点: 非格式化输入输出:getchar().putchar() 格式化输入输出 :scanf().printf() 字符串输入输出 :gets() 或 scanf().puts() 或 ...
- Triangular Pastures POJ - 1948
Triangular Pastures POJ - 1948 sum表示木条的总长.a[i]表示第i根木条长度.ans[i][j][k]表示用前i条木条,摆成两条长度分别为j和k的边是否可能. 那么a ...
- 首先定义一个5X8的二维数组,然后使用随机数填充满。借助Arrays的方法对二维数组进行排序。
package day02; import java.util.Arrays; import java.util.Random; public class Test01 { public static ...
- 选择排序 分类: 算法 c/c++ 2014-10-10 20:32 509人阅读 评论(0) 收藏
选择排序(假设递增排序) 每次选取从当前结点到末尾结点中最小的一个与当前结点交换,每一轮固定一个元素位置. 时间复杂度O(n^2),空间复杂度O(1).下面的示例代码以带头结点的链表为存储结构: #i ...
- SpringBoot 2.x (4):配置文件与单元测试
SpringBoot的配置文件有默认的application.properties 还可以使用YAML 区别: application.properties示例: server.port=8090 s ...