C++通过继承(inheritance)虚函数(virtual function)来实现多态性。所谓多态,简单地说就是,将基类的指针或引用绑定到子类的实例,然后通过基类的指针或引用调用实际子类的成员函数(虚函数)。本文将介绍单继承、多重继承下虚函数的实现机制。

一、虚函数表

为了支持虚函数机制,编译器为每一个拥有虚函数的类的实例创建了一个虚函数表(virtual table),这个表中有许多的槽(slot),每个槽中存放的是虚函数的地址。虚函数表解决了继承、覆盖、添加虚函数的问题,保证其真实反应实际的函数。

为了能够找到 virtual table,编译器在每个拥有虚函数的类的实例中插入了一个成员指针 vptr,指向虚函数表。下面是一个例子:

class Base
{
public:
virtual void x() { cout << "Base::x()" << endl; }
virtual void y() { cout << "Base::y()" << endl; }
virtual void z() { cout << "Base::z()" << endl; }
}; typedef void(*pFun)(void); int main()
{
Base b;
int* vptr = (int*)&b; // 虚函数表地址 pFun func1 = (pFun)*((int*)*vptr); // 第一个函数
pFun func2 = (pFun)*((int*)*vptr+1); // 第二个函数
pFun func3 = (pFun)*((int*)*vptr+2); // 第三个函数 func1(); // 输出Base::x()
func2(); // 输出Base::y()
func3(); // 输出Base::z()
return 0;
}

上面定义了一个Base类,其中有三个虚函数。我们将Base类对象取址 &b 并强制转换为 int*,取得虚函数表的地址。然后对虚函数表的地址取值 *vptr 并强转为 int*,即取得第一个虚函数的地址了。将第一个虚函数的地址加1,取得第二个虚函数的地址,再加1即取得第三个虚函数的地址。

注意,之所以可以通过对象实例的地址得到虚函数表,是因为 vptr 指针位于对象实例的最前面(这是由编译器决定的,主要是为了保证取到虚函数表有最高的性能——如果有多层继承或是多重继承的情况下)。如图所示:

在VS2012中加断点进行Debug可以查看到虚函数表:

二、单继承时的虚函数表

1、无虚函数覆盖

假如现有单继承关系如下:

class Base
{
public:
virtual void x() { cout << "Base::x()" << endl; }
virtual void y() { cout << "Base::y()" << endl; }
virtual void z() { cout << "Base::z()" << endl; }
}; class Derive : public Base
{
public:
virtual void x1() { cout << "Derive::x1()" << endl; }
virtual void y1() { cout << "Derive::y1()" << endl; }
virtual void z1() { cout << "Derive::z1()" << endl; }
};

在这个单继承的关系中,子类没有重写父类的任何方法,而是加入了三个新的虚函数。Derive类实例的虚函数表布局如图示:

  • Derive class 继承了 Base class 中的三个虚函数,准确的说,是该函数实体的地址被拷贝到 Derive 实例的虚函数表对应的 slot 之中。

  • 新增的 虚函数 置于虚函数表的后面,并按声明顺序存放。

2、有虚函数覆盖

如果在继承关系中,子类重写了父类的虚函数:

class Base
{
public:
virtual void x() { cout << "Base::x()" << endl; }
virtual void y() { cout << "Base::y()" << endl; }
virtual void z() { cout << "Base::z()" << endl; }
}; class Derive : public Base
{
public:
virtual void x() { cout << "Derive::x()" << endl; } // 重写
virtual void y1() { cout << "Derive::y1()" << endl; }
virtual void z1() { cout << "Derive::z1()" << endl; }
};

则Derive类实例的虚函数表布局为:

相比于无覆盖的情况,只是把 Derive::x() 覆盖了Base::x(),即第一个槽的函数地址发生了变化,其他的没有变化。

这时,如果通过绑定了子类对象的基类指针调用函数 x(),会执行 Derive 版本的 x(),这就是多态。

三、多重继承时的虚函数表

1、无虚函数覆盖

现有如下的多重继承关系,子类没有覆盖父类的虚函数:

class Base1
{
public:
virtual void x() { cout << "Base1::x()" << endl; }
virtual void y() { cout << "Base1::y()" << endl; }
virtual void z() { cout << "Base1::z()" << endl; }
}; class Base2
{
public:
virtual void x() { cout << "Base2::x()" << endl; }
virtual void y() { cout << "Base2::y()" << endl; }
virtual void z() { cout << "Base2::z()" << endl; }
}; class Derive : public Base1, public Base2
{
public:
virtual void x1() { cout << "Derive::x1()" << endl; }
virtual void y1() { cout << "Derive::y1()" << endl; }
};

对于 Derive 实例 d 的虚函数表布局,如下图:

可以看出:

  • 每个基类子对象对应一个虚函数表。
  • 派生类中新增的虚函数放到第一个虚函数表的后面。

测试代码(VS2012):

typedef void(*pFun)(void);

int main()
{
Derive b;
int** vptr = (int**)&b; // 虚函数表地址 // virtual table 1
pFun table1_func1 = (pFun)*((int*)*vptr+0); // vptr[0][0]
pFun table1_func2 = (pFun)*((int*)*vptr+1); // vptr[0][1]
pFun table1_func3 = (pFun)*((int*)*vptr+2); // vptr[0][2]
pFun table1_func4 = (pFun)*((int*)*vptr+3); // vptr[0][3]
pFun table1_func5 = (pFun)*((int*)*vptr+4); // vptr[0][4] // virtual table 2
pFun table2_func1 = (pFun)*((int*)*(vptr+1)+0); // vptr[1][0]
pFun table2_func2 = (pFun)*((int*)*(vptr+1)+1); // vptr[1][1]
pFun table2_func3 = (pFun)*((int*)*(vptr+1)+2); // vptr[1][2] // call
table1_func1();
table1_func2();
table1_func3();
table1_func4();
table1_func5(); table2_func1();
table2_func2();
table2_func3();
return 0;
}

不同编译器对 virtual table 的实现不同,经测试,在 g++ 中需要这样:

// virtual table 1
pFun table1_func1 = (pFun)*((int*)*vptr+0); // vptr[0][0]
pFun table1_func2 = (pFun)*((int*)*vptr+2); // vptr[0][2]
pFun table1_func3 = (pFun)*((int*)*vptr+4); // vptr[0][4]
pFun table1_func4 = (pFun)*((int*)*vptr+6); // vptr[0][6]
pFun table1_func5 = (pFun)*((int*)*vptr+8); // vptr[0][8] // virtual table 2
pFun table2_func1 = (pFun)*((int*)*(vptr+1)+0); // vptr[1][0]
pFun table2_func2 = (pFun)*((int*)*(vptr+1)+2); // vptr[1][2]
pFun table2_func3 = (pFun)*((int*)*(vptr+1)+4); // vptr[1][4]

2、有虚函数覆盖

将上面的多重继承关系稍作修改,让子类重写基类的 x() 函数:

class Base1
{
public:
virtual void x() { cout << "Base1::x()" << endl; }
virtual void y() { cout << "Base1::y()" << endl; }
virtual void z() { cout << "Base1::z()" << endl; }
}; class Base2
{
public:
virtual void x() { cout << "Base2::x()" << endl; }
virtual void y() { cout << "Base2::y()" << endl; }
virtual void z() { cout << "Base2::z()" << endl; }
}; class Derive : public Base1, public Base2
{
public:
virtual void x() { cout << "Derive::x()" << endl; } // 重写
virtual void y1() { cout << "Derive::y1()" << endl; }
};

这时 Derive 实例的虚函数表布局会变成下面这个样子:

相比于无覆盖的情况,只是将Derive::x()覆盖了Base1::x()Base2::x()而已,你可以自己写测试代码测试一下,这里就不再赘述了。

注:若虚函数是 private 或 protected 的,我们照样可以通过访问虚函数表来访问这些虚函数,即上面的测试代码一样能运行。

附:编译器对指针的调整

在多重继承下,我们可以将子类实例绑定到任一父类的指针(或引用)上。以上述有覆盖的多重继承关系为例:

Derive b;
Base1* ptr1 = &b; // 指向 b 的初始地址
Base2* ptr2 = &b; // 指向 b 的第二个子对象
  • 因为 Base1 是第一个基类,所以 ptr1 指向的是 Derive 对象的起始地址,不需要调整指针(偏移)。
  • 因为 Base2 是第二个基类,所以必须对指针进行调整,即加上一个 offset,让 ptr2 指向 Base2 子对象。
  • 当然,上述过程是由编译器完成的。

当然,你可以在VS2012里通过Debug看出 ptr1 和 ptr2 是不同的,我们可以这样子:

Base1* b1 = (Base1*)ptr2;
b1->y(); // 输出 Base2::y()
Base2* b2 = (Base2*)ptr1;
b2->y(); // 输出 Base1::y()

其实,通过某个类型的指针访问某个成员时,编译器只是根据类型的定义查找这个成员所在偏移量,用这个偏移量获取成员。由于 ptr2 本来就指向 Base2 子对象的起始地址,所以b1->y()调用到的是Base2::y(),而 ptr1 本来就指向 Base1 子对象的起始地址(即
Derive对象的起始地址),所以b2->y()调用到的是Base1::y()

个人站点:http://songlee24.github.com


参考:1、《Inside The C++ Object Model》

2、http://blog.csdn.net/haoel/article/details/1948051

C++进阶之虚函数表的更多相关文章

  1. C++ 虚函数表解析

    转载:陈皓 http://blog.csdn.net/haoel 前言 C++中 的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实 ...

  2. C++ 多态、虚函数机制以及虚函数表

    1.非virtual函数,调用规则取决于对象的显式类型.例如 A* a  = new B(); a->display(); 调用的就是A类中定义的display().和对象本体是B无关系. 2. ...

  3. C++迟后联编和虚函数表

    先看一个题目: class Base { public: virtual void Show(int x) { cout << "In Base class, int x = & ...

  4. C++ 知道虚函数表的存在

    今天翻看陈皓大大的博客,直接找关于C++的东东,看到了虚函数表的内容,找一些能看得懂的地方记下笔记. 0 引子 类中存在虚函数,就会存在虚函数表,在vs2015的实现中,它存在于类的头部. 假设有如下 ...

  5. C++虚函数和虚函数表

    前导 在上面的博文中描述了基类中存在虚函数时,基类和派生类中虚函数表的结构. 在派生类也定义了虚函数时,函数表又是怎样的结构呢? 先看下面的示例代码: #include <iostream> ...

  6. C++ Daily 《5》----虚函数表的共享问题

    问题: 包含一个以上虚函数的 class B, 它所定义的 对象是否共用一个虚函数表? 分析: 由于含有虚函数,因此对象内存包含了一个指向虚函数表的指针,但是这个指针指向的是同一个虚函数表吗? 实验如 ...

  7. C++虚函数表

    大家知道虚函数是通过一张虚函数表来实现的.在这个表中,主要是一个类的虚函数的地址表,这张表解决了继承.覆盖的问题,其内容真是反应实际的函数.这样,在有虚函数的类的实例中,这个表分配在了这个实例的内存中 ...

  8. 对C++虚函数、虚函数表的简单理解

    一.虚函数的作用 以一个通用的图形类来了解虚函数的定义,代码如下: #include "stdafx.h" #include <iostream> using name ...

  9. 深入理解C++虚函数表

    虚函数表是C++类中存放虚函数的一张表,理解虚函数表对于理解多态很重要. 本次使用的编译器是VS2013,为了简化操作,不用去操作函数指针,我使用到了VS的CL编译选项来查看类的内存布局. CL使用方 ...

随机推荐

  1. CREATE TRIGGER - 定义一个新的触发器

    SYNOPSIS CREATE TRIGGER name { BEFORE | AFTER } { event [ OR ... ] } ON table [ FOR [ EACH ] { ROW | ...

  2. CE工具里自带的学习工具--第五关

    图解: 此时会弹出一个对话框,选择是就可以了,最终会看到:

  3. bat copy

    @echo off regedit /s %~dp0regedit.reg                                          //注册注册表xcopy "D: ...

  4. vue全选和取消全选

    代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...

  5. java将很长的一条sql语句,自动换行输出(修改版)2019-06-01(bug未修复)

    package org.jimmy.autosearch2019.test; import java.util.HashMap; public class AutoLinefeedSql { publ ...

  6. 01CSS使用方法

    CSS使用方法 内联定义 内联定义即是在对象的标记内使用对象的style属性定义适用其的样式表属性. 内部样式表 <style type="text/css"></style> ...

  7. PHP 数组相加 和 数组合并array_merge

    $arr1 = array("a"=>"PHP","b"=>"java","python" ...

  8. PageOffice NET MVC下使用

    1)下载官方demo http://www.zhuozhengsoft.com/dowm/ 2)选择此项下载 3)官方demo暂时还未修改支持42版本以上的谷歌浏览器 所以需要修改以下部分 /home ...

  9. Hibernate-02

    一.hibernate实体创建规则 1.hibernate---->持久层ORM 映射框架,专注于数据的持久化工作. 2.持久化类创建规则 --->1.提供无参数的构造方法 2.私有化.对 ...

  10. PHP:分页类(比较庞大不建议在项目中用)

    文章来源:http://www.cnblogs.com/hello-tl/p/7685178.html <?php //地址 //page::$url=''; //每页的条数 默认10 //pa ...