这个题目难度非常大,首先对于老师的一种方案,应用分数规划的一般做法,求出所有的c=t-rate*p,如果没有选择的c值中的最大值比选择了的c值中的最小值大,那么这个解是可以改进的。

那么问题就转化成了怎么求最小的c和最大的c。

t-rate*p 求这种类型的最值,并且rate是单调的,那么就可以考虑利用斜率优化的那种办法来维护决策点。

考虑两个决策点,得到ti-tj>rate(pi-pj)  但是这个pi pj的大小不能确定,我们知道可以利用斜率优化的问题不仅仅要rate单调,还需要pi 单调 这个时候我们需要利用题目中的条件,题目中保证了t/p单调,根据这个条件,可以推出求两种最值的时候都只有单调的p才是有可能成为决策点的。那么就可以按照斜率优化步骤来解题了。一个是用单调栈维护,另外一个利用单调队列维护。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=5e4+9;
double high[maxn],low[maxn];
long long sumt[maxn],sump[maxn];
struct D
{
long long t,p;
bool operator <(const D & xx) const
{
return t*xx.p>xx.t*p;
}
}test[maxn];
int que[maxn]; bool chk(int i,int j,int t,int s)
{
long long a=(test[i].t-test[j].t)*(test[t].p-test[s].p);
long long b=(test[t].t-test[s].t)*(test[i].p-test[j].p);
return a>b;
} bool chk2(int i,int j,long long t,long long p)
{
long long a=(test[i].t-test[j].t)*p;
long long b=t*(test[i].p-test[j].p);
return a>b;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++)
scanf("%lld %lld",&test[i].t,&test[i].p);
sort(test+1,test+1+n); for(int i=1;i<=n;i++)
{
sumt[i]=sumt[i-1]+test[i].t;
sump[i]=sump[i-1]+test[i].p;
} int front=1,end=0;
for(int i=1;i<=n;i++)
{
while(end>=front&&test[i].p>=test[que[end]].p)
end--;
while(end>front&&chk(que[end],i,que[end-1],que[end]))
end--;
que[++end]=i;
while(front<end&&chk2(que[front],que[front+1],sumt[i],sump[i])==1)
front++;
int u=que[front];
low[i]=test[u].t-(double)sumt[i]/sump[i]*test[u].p;
}
int top=0;
for(int i=n;i>=1;i--)
{
while(top>0&&test[i].p<=test[que[top]].p)
top--;
while(top>1&&chk(i,que[top],que[top],que[top-1]))
top--;
que[++top]=i;
while(top>1&&chk2(que[top],que[top-1],sumt[i-1],sump[i-1])==0)
top--;
int u=que[top];
high[i]=test[u].t-(double)sumt[i-1]/sump[i-1]*test[u].p;
}
int ans=0;
for(int i=1;i<n;i++)
if(high[i+1]>low[i])
ans++;
cout<<ans<<endl;
for(int i=n-1;i>=1;i--)
if(high[i+1]>low[i])
printf("%d\n",n-i);
}
return 0;
}

poj 3266 Cow School 分数规划的更多相关文章

  1. Poj 2018 Best Cow Fences(分数规划+DP&&斜率优化)

    Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Description Farmer John's farm consists of a ...

  2. POJ 2728 JZYZOJ 1636 分数规划 最小生成树 二分 prim

    http://172.20.6.3/Problem_Show.asp?id=1636 复习了prim,分数规划大概就是把一个求最小值或最大值的分式移项变成一个可二分求解的式子. #include< ...

  3. poj 3621 0/1分数规划求最优比率生成环

    思路:以val[u]-ans*edge[i].len最为边权,判断是否有正环存在,若有,那么就是ans小了.否则就是大了. 在spfa判环时,先将所有点进队列. #include<iostrea ...

  4. poj Dropping tests 01分数规划---Dinkelbach算法

    果然比二分要快将近一倍.63MS.二分94MS. #include <iostream> #include <algorithm> #include <cstdio> ...

  5. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  6. POJ 2728 Desert King (01分数规划)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:29775   Accepted: 8192 Descr ...

  7. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  8. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

  9. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

随机推荐

  1. Qt技巧:Win7下打包发布Qt程序(解释的比较清楚,把exe和dll伪装合并成一个文件)

    转自:http://www.stardrad.com/blog/qt-5%E7%A8%8B%E5%BA%8F%E5%9C%A8windows%E4%B8%8A%E7%9A%84%E5%8F%91%E5 ...

  2. vs提示“当前不会命中断点,源代码与原始版本不同”的一种解决办法

    将出问题的cpp文件用notepad打开,另存为‘unicode’类型,覆盖源文件即可

  3. 【第三方SDK】百度地图实现最简单的定位功能(无地图界面)

    在近期的项目中,须要实现无地图界面的定位功能,定位用户所在的城市.因此,本篇文章,主要介绍怎样使用百度地图SDK实现无导航界面的定位功能. 1.申请百度开发人员账户 2.创建应用,获取key 例如以下 ...

  4. hdu4597 Play Game

    Play Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total Sub ...

  5. c++中的对象引用(object reference)与对象指针的区别

    ★ 相同点: 1. 都是地址的概念: 指针指向一块内存,它的内容是所指内存的地址:引用是某块内存的别名. ★ 区别: 1. 指针是一个实体,而引用仅是个别名: 2. 引用使用时无需解引用(*),指针需 ...

  6. arduino电子琴(2015-11-04)

    前言 这是论坛上一个坛友问的问题,想做一个可变音调的电子琴,想着正好练练手,就顺手做一下. 接线图

  7. C#学习之在辅助线程中修改UI控件----invoke方法

    Invoke and BeginInvoke 转载地址:http://www.cnblogs.com/worldreason/archive/2008/06/09/1216127.html 在Invo ...

  8. Web Application的目录结构

    Java web工程下的webapp或WebContent就是工程的发布文件夹,发布时会把该文件夹发布到tomcat的webapps里. 一个web应用必须要有的目录文件如下: webapp/WebC ...

  9. 4.I/O复用以及基于I/O复用的回射客户端/服务器

    I/O复用:当一个或多个I/O条件满足时,我们就被通知到,这种能力被称为I/O复用. 1.I/O复用的相关系统调用 posix的实现提供了select.poll.epoll两类系统调用以及相关的函数来 ...

  10. 插件化—配置xml的辅助测试

    1.xml文件,xml文件在res/xml目录下 <?xml version="1.0" encoding="utf-8"?> <infos& ...