连接:1018. Binary Apple Tree

Time limit: 1.0 second
Memory limit: 64 MB

Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by integers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to 
N, where 
N is the total number of all enumerated points. For instance in the picture below 
N is equal to 5. Here is an example of an enumerated tree with four branches:

2   5
\ /
3 4
\ /
1
As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

Input

First line of input contains two numbers:  N and  Q ( 2 ≤  N ≤ 100;   1 ≤  Q ≤  N − 1 ).  N denotes the number of enumerated points in a tree.  Q denotes amount of branches that should be preserved. Next N − 1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

Output

Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

Sample

input output
5 2
1 3 1
1 4 10
2 3 20
3 5 20
21

题目意思: 
有一棵苹果树,苹果树的是一棵二叉树,共N个节点,树节点编号为1~N,编号为1的节点为树根,边可理解为树的分枝,每个分支都长着若干个苹果,现在要要求减去若干个分支,保留M个分支,要求这M个分支的苹果数量最多。
二叉苹果树:一道金典的树形DP,这题很特殊,因为是二叉树,所以只需要处理左二子,右儿子就可以了,但是我还是想着用一般的树形DP来做这道题,就是不当成二叉树来做。
思路:跟0-1背包思想差不多,在u的儿子v为根节点的子树中选j条边加到u中。
dp[u][k]=max(dp[u][k],dp[u][k-j]+dp[v][j-1]+w)(1<j<=k),w:u与v的边的取值,因为如果在v子树中选边,那么u到v的边必选。



#include<stdio.h>
#include<string.h>
const int N=110;
int dp[N][N],vis[N],head[N],num,m;
struct edge
{
int st,ed,w,next;
}e[N*4];
void addedge(int x,int y,int w)
{
e[num].st=x;e[num].ed=y;e[num].w=w;e[num].next=head[x];head[x]=num++;
e[num].st=y;e[num].ed=x;e[num].w=w;e[num].next=head[y];head[y]=num++;
}
void dfs(int u)
{
vis[u]=1;
int i,v,w,j,k,son=0;
for(i=head[u];i!=-1;i=e[i].next)
{
v=e[i].ed;w=e[i].w;
if(vis[v]==1)continue;
dfs(v);
for(k=m;k>=1;k--)//0-1背包
{
for(j=1;j<=k;j++)//在v节点的子树中选择j条边
if(dp[u][k]<dp[u][k-j]+dp[v][j-1]+w)//u与v有一条边,所以加上dp[v][j-1],
dp[u][k]=dp[u][k-j]+dp[v][j-1]+w;
}
}
}
int main()
{
int i,x,y,w,n;
while(scanf("%d%d",&n,&m)!=-1)
{
memset(head,-1,sizeof(head));
num=0;
for(i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&w);
addedge(x,y,w);
}
memset(vis,0,sizeof(vis));
memset(dp,0,sizeof(dp));
dfs(1);
printf("%d\n",dp[1][m]);
}
return 0;
}



URAL 1018 (金典树形DP)的更多相关文章

  1. Ural 1018 (树形DP+背包+优化)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662 题目大意:树枝上间连接着一坨坨苹果(不要在意'坨'),给 ...

  2. ural 1018(树形dp)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662 思路:典型的树形dp,处理的时候类似于分组背包,dp[i] ...

  3. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  4. 树形DP URAL 1039 Anniversary Party

    题目传送门 /* 题意:上司在,员工不在,反之不一定.每一个人有一个权值,问权值和最大多少. 树形DP:把上司和员工的关系看成根节点和子节点的关系,两者有状态转移方程: dp[rt][0] += ma ...

  5. 刷题总结——二叉苹果树(ssoj树形dp+记忆化搜索)

    题目: 题目背景 URAL:http://acm.timus.ru/problem.aspx?space=1&num=1018 题目描述 有一棵苹果树,如果树枝有分叉,一定是分 2 叉(就是说 ...

  6. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  7. poj 2342 Anniversary party 简单树形dp

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3862   Accepted: 2171 ...

  8. POJ 2342 (树形DP)

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3863   Accepted: 2172 ...

  9. hdu1520 第一道树形DP,激动哇咔咔!

    A - 树形dp Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Sta ...

随机推荐

  1. eclipse导出附带源码的jar包

    最近在搞Andengine游戏开发,发现andengine的jar包可以直接点击查看源码,而其他项目的jar包却看不了,因此自己研究了下如何生成可以直接查看源码的jar包. 1.eclipse中点击项 ...

  2. 【SVN】is out of date

    右击项目(team->update 或者 team->freash/cleanup),再操作,提交就可以了.

  3. 2080夹角有多大II

    寻人启事:2014级新生看过来! 夹角有多大II Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...

  4. linux(Centos 6.3)学习笔记

    一.系统分区    1,磁盘分区        使用分区编辑器(partition editor)在磁盘上划分几个逻辑部分.碟片一旦划分成          数个分区,不同类的目录与文件可以存储进不同 ...

  5. BufferedInputStream 源码分析

    一.简介 BufferedInputStream会缓存一部分数据(默认8K),这个函数的作用就是读取更多的数据到缓存,必要的时候会扩大缓存的内容. 在该类中有几个重要的标志位:markpos,pos, ...

  6. SMTP邮件传输协议发送邮件和附件(转)

    1.     SMTP 常用命令简介 1). SMTP 常用命令 HELO/EHLO 向服务器标识用户身份 MAIL 初始化邮件传输 mail from: RCPT 标识单个的邮件接收人:常在MAIL ...

  7. Struts2 学习笔记16 struts标签 part2

    接下来说一下if标签.下面是结果图. <li><s:if test="#parameters.age[0]<0">error!</s:if> ...

  8. Android的BUG(四) - Android app的卡死问题

    做android,免不了要去运行一些跑分程序,常用的跑分程序有quadrant(象限),nbench,安兔兔等.作为系统工程师,对这些跑分 程序都非常的不屑,这个只能是一个不客观的参考,但客户都喜欢拿 ...

  9. mailcore -- Mail port

    以163为例的各个MailserverSSL协议port号和非SSL协议port号

  10. C++ 函数声明中指定,默认参数

    C++ 在声明函数的时候,如果指定了,参数的默认值,再调用函数的时候可以省略后面的参数. 如果调用函数写上的参数,但是不全.参数列表后面的使用默认值.如下例子,一看就清楚了. #include < ...