连接:1018. Binary Apple Tree

Time limit: 1.0 second
Memory limit: 64 MB

Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by integers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to 
N, where 
N is the total number of all enumerated points. For instance in the picture below 
N is equal to 5. Here is an example of an enumerated tree with four branches:

2   5
\ /
3 4
\ /
1
As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

Input

First line of input contains two numbers:  N and  Q ( 2 ≤  N ≤ 100;   1 ≤  Q ≤  N − 1 ).  N denotes the number of enumerated points in a tree.  Q denotes amount of branches that should be preserved. Next N − 1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

Output

Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

Sample

input output
5 2
1 3 1
1 4 10
2 3 20
3 5 20
21

题目意思: 
有一棵苹果树,苹果树的是一棵二叉树,共N个节点,树节点编号为1~N,编号为1的节点为树根,边可理解为树的分枝,每个分支都长着若干个苹果,现在要要求减去若干个分支,保留M个分支,要求这M个分支的苹果数量最多。
二叉苹果树:一道金典的树形DP,这题很特殊,因为是二叉树,所以只需要处理左二子,右儿子就可以了,但是我还是想着用一般的树形DP来做这道题,就是不当成二叉树来做。
思路:跟0-1背包思想差不多,在u的儿子v为根节点的子树中选j条边加到u中。
dp[u][k]=max(dp[u][k],dp[u][k-j]+dp[v][j-1]+w)(1<j<=k),w:u与v的边的取值,因为如果在v子树中选边,那么u到v的边必选。



#include<stdio.h>
#include<string.h>
const int N=110;
int dp[N][N],vis[N],head[N],num,m;
struct edge
{
int st,ed,w,next;
}e[N*4];
void addedge(int x,int y,int w)
{
e[num].st=x;e[num].ed=y;e[num].w=w;e[num].next=head[x];head[x]=num++;
e[num].st=y;e[num].ed=x;e[num].w=w;e[num].next=head[y];head[y]=num++;
}
void dfs(int u)
{
vis[u]=1;
int i,v,w,j,k,son=0;
for(i=head[u];i!=-1;i=e[i].next)
{
v=e[i].ed;w=e[i].w;
if(vis[v]==1)continue;
dfs(v);
for(k=m;k>=1;k--)//0-1背包
{
for(j=1;j<=k;j++)//在v节点的子树中选择j条边
if(dp[u][k]<dp[u][k-j]+dp[v][j-1]+w)//u与v有一条边,所以加上dp[v][j-1],
dp[u][k]=dp[u][k-j]+dp[v][j-1]+w;
}
}
}
int main()
{
int i,x,y,w,n;
while(scanf("%d%d",&n,&m)!=-1)
{
memset(head,-1,sizeof(head));
num=0;
for(i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&w);
addedge(x,y,w);
}
memset(vis,0,sizeof(vis));
memset(dp,0,sizeof(dp));
dfs(1);
printf("%d\n",dp[1][m]);
}
return 0;
}



URAL 1018 (金典树形DP)的更多相关文章

  1. Ural 1018 (树形DP+背包+优化)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662 题目大意:树枝上间连接着一坨坨苹果(不要在意'坨'),给 ...

  2. ural 1018(树形dp)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662 思路:典型的树形dp,处理的时候类似于分组背包,dp[i] ...

  3. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  4. 树形DP URAL 1039 Anniversary Party

    题目传送门 /* 题意:上司在,员工不在,反之不一定.每一个人有一个权值,问权值和最大多少. 树形DP:把上司和员工的关系看成根节点和子节点的关系,两者有状态转移方程: dp[rt][0] += ma ...

  5. 刷题总结——二叉苹果树(ssoj树形dp+记忆化搜索)

    题目: 题目背景 URAL:http://acm.timus.ru/problem.aspx?space=1&num=1018 题目描述 有一棵苹果树,如果树枝有分叉,一定是分 2 叉(就是说 ...

  6. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  7. poj 2342 Anniversary party 简单树形dp

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3862   Accepted: 2171 ...

  8. POJ 2342 (树形DP)

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3863   Accepted: 2172 ...

  9. hdu1520 第一道树形DP,激动哇咔咔!

    A - 树形dp Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Sta ...

随机推荐

  1. X Window System介绍

    1.概述     X Window System是1984年由麻省理工学院(MIT)和DEC公司共同开发研究的,是执行在UNIX系统上的视窗系统.严格地说,X Window System并非一个软件, ...

  2. UVA 1619 Feel Good(DP)

    Bill is developing a new mathematical theory for human emotions. His recent investigations are dedic ...

  3. MVC action返回partialView前台html 拼接

    //后台 [HttpPost] public ActionResult GetNextLazyLoadProduct(int[] productIdList)         {           ...

  4. 【Android】ScrollView+GridView 显示问题

    在使用Android的ScrollView里面嵌套GridView时,设置android:layout_height="wrap_content"属性,运行界面的效果不会出现全部数 ...

  5. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

  6. Java面试题集(1-50)

    下面的内容是对网上原有的面试题集及答案进行了全面修订之后的内容(原来的题目有很多重复无用的题以及错误的答案),参照了JDK最新版本,删除了重复题目以及EJB2.x等无用内容,补充最新面试题.知识点巩固 ...

  7. C#路径,文件,目录,I/O常见操作

         C#路径,文件,目录,I/O常见操作 文件操作是程序中非常基础和重要的内容,而路径.文件.目录以及I/O都是在进行文件操作时的常见主题,这里想把这些常见的问题作个总结,对于每个问题,尽量提供 ...

  8. JSONP跨域的原理解析[转]

    转自 http://www.nowamagic.net/librarys/veda/detail/224 JavaScript是一种在Web开发中经常使用的前端动态脚本技术.在JavaScript中, ...

  9. activebar的用法

    效果图: 网站页面上弹出消息提示狂,用来提示重大事件. <script src="http://www.ijquery.cn/js/jquery-1.7.2.min.js"& ...

  10. 用QFileSystemWatcher来监视文件和目录的改变(内部还是使用了timer)

    Use Case: 两个程序共享同一个Configuration文件,当一个程序作出改变的时候,需要另外一个程序能够及时响应. 之前其实猜的八九不离十,估计是有一个Timer,然后定时查询Config ...