连接:1018. Binary Apple Tree

Time limit: 1.0 second
Memory limit: 64 MB

Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by integers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to 
N, where 
N is the total number of all enumerated points. For instance in the picture below 
N is equal to 5. Here is an example of an enumerated tree with four branches:

2   5
\ /
3 4
\ /
1
As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

Input

First line of input contains two numbers:  N and  Q ( 2 ≤  N ≤ 100;   1 ≤  Q ≤  N − 1 ).  N denotes the number of enumerated points in a tree.  Q denotes amount of branches that should be preserved. Next N − 1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

Output

Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

Sample

input output
5 2
1 3 1
1 4 10
2 3 20
3 5 20
21

题目意思: 
有一棵苹果树,苹果树的是一棵二叉树,共N个节点,树节点编号为1~N,编号为1的节点为树根,边可理解为树的分枝,每个分支都长着若干个苹果,现在要要求减去若干个分支,保留M个分支,要求这M个分支的苹果数量最多。
二叉苹果树:一道金典的树形DP,这题很特殊,因为是二叉树,所以只需要处理左二子,右儿子就可以了,但是我还是想着用一般的树形DP来做这道题,就是不当成二叉树来做。
思路:跟0-1背包思想差不多,在u的儿子v为根节点的子树中选j条边加到u中。
dp[u][k]=max(dp[u][k],dp[u][k-j]+dp[v][j-1]+w)(1<j<=k),w:u与v的边的取值,因为如果在v子树中选边,那么u到v的边必选。



#include<stdio.h>
#include<string.h>
const int N=110;
int dp[N][N],vis[N],head[N],num,m;
struct edge
{
int st,ed,w,next;
}e[N*4];
void addedge(int x,int y,int w)
{
e[num].st=x;e[num].ed=y;e[num].w=w;e[num].next=head[x];head[x]=num++;
e[num].st=y;e[num].ed=x;e[num].w=w;e[num].next=head[y];head[y]=num++;
}
void dfs(int u)
{
vis[u]=1;
int i,v,w,j,k,son=0;
for(i=head[u];i!=-1;i=e[i].next)
{
v=e[i].ed;w=e[i].w;
if(vis[v]==1)continue;
dfs(v);
for(k=m;k>=1;k--)//0-1背包
{
for(j=1;j<=k;j++)//在v节点的子树中选择j条边
if(dp[u][k]<dp[u][k-j]+dp[v][j-1]+w)//u与v有一条边,所以加上dp[v][j-1],
dp[u][k]=dp[u][k-j]+dp[v][j-1]+w;
}
}
}
int main()
{
int i,x,y,w,n;
while(scanf("%d%d",&n,&m)!=-1)
{
memset(head,-1,sizeof(head));
num=0;
for(i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&w);
addedge(x,y,w);
}
memset(vis,0,sizeof(vis));
memset(dp,0,sizeof(dp));
dfs(1);
printf("%d\n",dp[1][m]);
}
return 0;
}



URAL 1018 (金典树形DP)的更多相关文章

  1. Ural 1018 (树形DP+背包+优化)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662 题目大意:树枝上间连接着一坨坨苹果(不要在意'坨'),给 ...

  2. ural 1018(树形dp)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662 思路:典型的树形dp,处理的时候类似于分组背包,dp[i] ...

  3. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  4. 树形DP URAL 1039 Anniversary Party

    题目传送门 /* 题意:上司在,员工不在,反之不一定.每一个人有一个权值,问权值和最大多少. 树形DP:把上司和员工的关系看成根节点和子节点的关系,两者有状态转移方程: dp[rt][0] += ma ...

  5. 刷题总结——二叉苹果树(ssoj树形dp+记忆化搜索)

    题目: 题目背景 URAL:http://acm.timus.ru/problem.aspx?space=1&num=1018 题目描述 有一棵苹果树,如果树枝有分叉,一定是分 2 叉(就是说 ...

  6. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  7. poj 2342 Anniversary party 简单树形dp

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3862   Accepted: 2171 ...

  8. POJ 2342 (树形DP)

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3863   Accepted: 2172 ...

  9. hdu1520 第一道树形DP,激动哇咔咔!

    A - 树形dp Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Sta ...

随机推荐

  1. android蓝牙(二)——接收数据

    在蓝牙开发中,我们有这种一个需求:我们的androidclient要始终保持和蓝牙的连接,当蓝牙有数据返回的时候,androidclient就要及时的收取数据,当蓝牙没有数据返回的时候我们就要保持an ...

  2. Gradle 1.12 翻译——第十四章. 教程 - 杂七杂八

    有关其它已翻译的章节请关注Github上的项目:https://github.com/msdx/gradledoc/tree/1.12,或訪问:http://gradledoc.qiniudn.com ...

  3. if语句之有房么?有钱么?有能力么?

    思路:1.如果有房,可以谈谈 2.如果没有房,问第二个条件有钱么,如果有,可以谈谈 3.如果没有房没有钱,则问第三个条件有能力么,如果有,可以谈谈 4.如果以上三个条件都没有,则拜拜 Console. ...

  4. 递推,大数存储E - Order Count

    Description If we connect 3 numbers with "<" and "=", there are 13 cases: 1) ...

  5. likely() and unlikely()

    likely() and unlikely() http://www.cnblogs.com/yangzd/archive/2010/09/27/1837202.html 在linux中判断语句经常会 ...

  6. 数据库数据用Excel导出的3种方法

    将数据库数据用Excel导出主要有3种方法:用Excel.Application接口.用OleDB.用HTML的Tabel标签 方法1——Excel.Application接口: 首先,需要要Exce ...

  7. 神奇的矩阵 NOI模拟题

    神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...

  8. 求知成瘾+逻辑成瘾+博识的无知,你中枪没?我感觉中枪了 - 外野 - Stage1st - Powered by Discuz!

    求知成瘾+逻辑成瘾+博识的无知,你中枪没?我感觉中枪了 - 外野 - Stage1st - Powered by Discuz! 求知成瘾 求知欲似乎是人们的本能,尤其「好学」这个词被定义成天生的褒义 ...

  9. 作业还是作孽?——Leo鉴书79

    中国孩子,尤其是城市孩子课业过重是个不争的事实.儿子上幼儿园的作业已经能做到8点多了,上小学之后不知道是不是会整得更晚.于是入手这本<家庭作业的迷思>,认真读读.请特别注意,不要买书叫&q ...

  10. JVM --字节码的加载

    ClassLoader类加载器 常见的类加载器有BootStrapClassLoader<-ExtClassLoader<-AppClassLoader<-用户ClassLoader ...