一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了.

---------------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 100009;
 
int N, M, C, Root, deg[maxn], L[maxn], R[maxn], Lw[maxn], Rw[maxn];
bool vis[maxn];
double Eu[maxn], Ed[maxn];
 
struct edge {
int t, w;
edge* n;
} E[maxn << 1], *pt = E, *H[maxn];
 
inline void AddEdge(int u, int v, int w) {
deg[pt->t = v]++, pt->w = w, pt->n = H[u], H[u] = pt++;
}
 
void DFS_D(int x) {
vis[x] = true;
Ed[x] = 0;
for(edge* e = H[x]; e; e = e->n) if(!vis[e->t]) {
DFS_D(e->t);
Ed[x] += Ed[e->t] + e->w;
}
if(x == Root) {
Ed[x] /= max(1, (deg[x] - (M < N ? 0 : 2)));
} else if(deg[x] > 1)
Ed[x] /= deg[x] - 1;
}
 
void DFS_U(int x) {
vis[x] = true;
for(edge* e = H[x]; e; e = e->n) if(!vis[e->t]) {
int d = deg[x];
if(x != Root) {
d--;
} else if(M == N)
d -= 2;
double t = (Ed[x] * d - Ed[e->t] - e->w);
if(x == Root) {
if(M < N)
Eu[e->t] = t / max(1, d - 1);
else
Eu[e->t] = (t + Eu[x] * 2) / (d + 1);
} else
Eu[e->t] = (t + Eu[x]) / d;
Eu[e->t] += e->w;
DFS_U(e->t);
}
}
 
void DFS_U(int x, int nxt[], int nxtw[], double &t, int len, double p = 0.5) {
if(nxt[x] != Root) {
t += (Ed[x] + len) * p * (deg[x] - 2) / (deg[x] - 1);
DFS_U(nxt[x], nxt, nxtw, t, len + nxtw[x], p / (deg[x] - 1));
} else
t += (Ed[x] + len) * p;
}
 
bool DFS_C(int x, edge* r = NULL) {
vis[x] = true;
for(edge* e = H[x]; e; e = e->n) if(e != r) {
L[e->t] = x;
R[x] = e->t;
Lw[e->t] = Rw[x] = e->w;
if(vis[e->t]) {
C = e->t;
return true;
}
if(DFS_C(e->t, E + ((e - E) ^ 1))) return true;
}
return false;
}
 
void Init() {
scanf("%d%d", &N, &M);
int u, v, w;
for(int i = 0; i < M; i++) {
scanf("%d%d%d", &u, &v, &w);
u--, v--;
AddEdge(u, v, w);
AddEdge(v, u, w);
}
}
 
void Work() {
double ans = 0;
if(M < N) {
memset(vis, 0, sizeof vis);
DFS_D(Root = 0);
memset(vis, 0, sizeof vis);
Eu[0] = 0;
DFS_U(Root = 0);
ans = Ed[0];
for(int i = 1; i < N; i++)
ans += (Ed[i] * (deg[i] - 1) + Eu[i]) / deg[i];
} else {
memset(vis, 0, sizeof vis);
DFS_C(0);
Root = C;
do {
memset(vis, 0, sizeof vis);
vis[L[Root]] = vis[R[Root]] = true;
DFS_D(Root);
} while((Root = L[Root]) != C);
Root = C;
do {
DFS_U(L[Root], L, Lw, Eu[Root], Lw[Root]);
DFS_U(R[Root], R, Rw, Eu[Root], Rw[Root]);
} while((Root = L[Root]) != C);
Root = C;
do {
memset(vis, 0, sizeof vis);
vis[L[Root]] = vis[R[Root]] = true;
DFS_U(Root);
} while((Root = L[Root]) != C);
memset(vis, 0, sizeof vis);
Root = C;
do {
ans += (Ed[Root] * (deg[Root] - 2) + Eu[Root] * 2) / deg[Root];
vis[Root] = true;
} while((Root = L[Root]) != C);
for(int i = 0; i < N; i++)
if(!vis[i]) ans += (Ed[i] * (deg[i] - 1) + Eu[i]) / deg[i];
}
printf("%.5lf\n", ans / N);
}
 
int main() {
Init();
Work();
return 0;
}

---------------------------------------------------------------------------------------------

2878: [Noi2012]迷失游乐园

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 752  Solved: 443
[Submit][Status][Discuss]

Description

放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩。进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点、m条道路的无向连通图,且该图中至多有一个环(即m只可能等于n或者n-1)。小Z现在所在的大门也正好是一个景点。小Z不知道什么好玩,于是他决定,从当前位置出发,每次随机去一个和当前景点有道路相连的景点,并且同一个景点不去两次(包括起始景点)。贪玩的小Z会一直游玩,直到当前景点的相邻景点都已经访问过为止。小Z所有经过的景点按顺序构成一条非重复路径,他想知道这条路径的期望长度是多少?小Z把游乐园的抽象地图画下来带回了家,可是忘了标哪个点是大门,他只好假设每个景点都可能是大门(即每个景点作为起始点的概率是一样的)。同时,他每次在选择下一个景点时会等概率地随机选择一个还没去过的相邻景点。

Input

第一行是两个整数n和m,分别表示景点数和道路数。 接下来行,每行三个整数Xi, Yi, Wi,分别表示第i条路径的两个景点为Xi, Yi,路径长Wi。所有景点的编号从1至n,两个景点之间至多只有一条道路。

Output

共一行,包含一个实数,即路径的期望长度,保留五位小数

Sample Input

4 3
1 2 3
2 3 1
3 4 4

Sample Output

6.00000

【样例解释】样例数据中共有6条不同的路径: 路径 长度 概率
1-->4 8 1/4
2-->1 3 1/8
2-->4 5 1/8
3-->1 4 1/8
3-->4 4 1/8
4-->1 8 1/4
因此期望长度 = 8/4 + 3/8 + 5/8 + 4/8 + 4/8 + 8/4 = 6.00
【评分方法】本题没有部分分,你程序的输出只有和标准答案的差距不超过0.01时,才能获得该测试点的满分,否则不得分。
【数据规模和约定】对于100%的数据,1 <= Wi <= 100。 测试点编号 n m 备注
1 n=10 m = n-1 保证图是链状
2 n=100 只有节点1的度数大于2
3 n=1000 /
4 n=100000 /
5 n=100000 /
6 n=10 m = n /
7 n=100 环中节点个数<=5
8 n=1000 环中节点个数<=10
9 n=100000 环中节点个数<=15
10 n=100000 环中节点个数<=20

HINT

Source

BZOJ 2878: [Noi2012]迷失游乐园( 树形dp )的更多相关文章

  1. bzoj 2878 [Noi2012]迷失游乐园——树上的期望dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2878 很好的树上概率题的思路,就是分成up和down. 代码中有众多小细节.让我弃疗好几天的 ...

  2. bzoj 2878: [Noi2012]迷失游乐园【树上期望dp+基环树】

    参考:https://blog.csdn.net/shiyukun1998/article/details/44684947 先看对于树的情况 设d[u]为点u向儿子走的期望长度和,du[u]为u点的 ...

  3. bzoj 2878: [Noi2012]迷失游乐园

    #include<iostream> #include<cstring> #include<cstdio> #define M 100005 #define ld ...

  4. bzoj2878 [Noi2012]迷失游乐园 [树形dp]

    Description 放假了,小Z认为呆在家里特别无聊.于是决定一个人去游乐园玩. 进入游乐园后.小Z看了看游乐园的地图,发现能够将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环 ...

  5. 【BZOJ 2878】 2878: [Noi2012]迷失游乐园 (环套树、树形概率DP)

    2878: [Noi2012]迷失游乐园 Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m ...

  6. [luogu2081 NOI2012] 迷失游乐园 (树形期望dp 基环树)

    传送门 题目描述 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩. 进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环(即m ...

  7. 2878: [Noi2012]迷失游乐园 - BZOJ

    Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环( ...

  8. Luogu P2081 [NOI2012]迷失游乐园 | 期望 DP 基环树

    题目链接 基环树套路题.(然而各种错误调了好久233) 当$m=n-1$时,原图是一棵树. 先以任意点为根做$dp$,求出从每一个点出发,然后只往自己子树里走时路径的期望长度. 接着再把整棵树再扫一遍 ...

  9. BZOJ 2878([Noi2012]-失落的游乐园树DP+出站年轮加+后市展望DP+vector的erase)

    2878: [Noi2012]迷失乐园 Time Limit: 10 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 319  Solved:  ...

随机推荐

  1. 6T GPT 移动硬盘在linux下的挂载

    实验室拿来了一个6T的移动硬盘,拿到后没有分区就直接用了,在Windows上用的好好的,插到上Linux后起初不会挂载,折腾了一会,成功挂载,很简单. 运行fdisk –l后,显示如下: 很明显,sd ...

  2. gateone安装(web版本ssh)

    前言: 好久都没来写博客,最近忙啥去了呢? 一是忙于saltstack的二次开发,二是云计算的学习研究中,所以就一直没写东西,今天给大家介绍个工具. 好了,开始正文! 1.首先来说一下为什么要web ...

  3. javascript之函数节流

    对于高频率的事件触发,为了优化页面性能,我们一般会对其做函数节流.比如: resize.keydow.scroll事件等.用户的频繁操作,会导致事件高频率的执行,这样会出现页面抖动啊.频繁调接口啊等问 ...

  4. ng-validate

    客户端表单验证是AngularJS里面最酷的功能之一. AngularJS表单验证可以让你从一开始就写出一个具有交互性和可相应的现代HTML5表单. 在AngularJS中,有许多表单验证指令.在这里 ...

  5. hdu1281棋盘游戏

    Problem Description 小希和Gardon在玩一个游戏:对一个N*M的棋盘,在格子里放尽量多的一些国际象棋里面的“车”,并且使得他们不能互相攻击,这当然很简单,但是Gardon限制了只 ...

  6. [ZT]图像处理库的比较:OpenCV,FreeImage,CImg,CxImage

    1.对OpenCV 的印象:功能十分的强大,而且支持目前先进的图像处理技术,体系十分完善,操作手册很详细,手册首先给大家补计算机视觉的知识,几乎涵盖了近10年内的主流算法: 然后将图像格式和矩阵运算, ...

  7. VIM设置-发现VIM的美

    今天在Linux上调代码,突然发现连高亮都没有.到网上找了找,发现一个大神的微博里有. 在此记录:http://www.cnblogs.com/ma6174/archive/2011/12/10/22 ...

  8. arm-linux-gcc 安装和测试

    下载交叉编译器http://pan.baidu.com/share/link?shareid=984027778&uk=388424485 第一步进行解压: tar -zxvf 文件 第二部将 ...

  9. Kaggle入门

    Kaggle入门 1:竞赛 我们将学习如何为Kaggle竞赛生成一个提交答案(submisson).Kaggle是一个你通过完成算法和全世界机器学习从业者进行竞赛的网站.如果你的算法精度是给出数据集中 ...

  10. SQL Server IO系统问题解决

    方法 1. 查询是不是真的要返回这么多的数据. 方法 2. 查询是不是系统的内存不足. 方法 3. 检查查询要访问的数据是不是不常用.如果这个数据不常用,它没有在内存中也就不奇怪了. 方法 4. 是不 ...