一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了.

---------------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 100009;
 
int N, M, C, Root, deg[maxn], L[maxn], R[maxn], Lw[maxn], Rw[maxn];
bool vis[maxn];
double Eu[maxn], Ed[maxn];
 
struct edge {
int t, w;
edge* n;
} E[maxn << 1], *pt = E, *H[maxn];
 
inline void AddEdge(int u, int v, int w) {
deg[pt->t = v]++, pt->w = w, pt->n = H[u], H[u] = pt++;
}
 
void DFS_D(int x) {
vis[x] = true;
Ed[x] = 0;
for(edge* e = H[x]; e; e = e->n) if(!vis[e->t]) {
DFS_D(e->t);
Ed[x] += Ed[e->t] + e->w;
}
if(x == Root) {
Ed[x] /= max(1, (deg[x] - (M < N ? 0 : 2)));
} else if(deg[x] > 1)
Ed[x] /= deg[x] - 1;
}
 
void DFS_U(int x) {
vis[x] = true;
for(edge* e = H[x]; e; e = e->n) if(!vis[e->t]) {
int d = deg[x];
if(x != Root) {
d--;
} else if(M == N)
d -= 2;
double t = (Ed[x] * d - Ed[e->t] - e->w);
if(x == Root) {
if(M < N)
Eu[e->t] = t / max(1, d - 1);
else
Eu[e->t] = (t + Eu[x] * 2) / (d + 1);
} else
Eu[e->t] = (t + Eu[x]) / d;
Eu[e->t] += e->w;
DFS_U(e->t);
}
}
 
void DFS_U(int x, int nxt[], int nxtw[], double &t, int len, double p = 0.5) {
if(nxt[x] != Root) {
t += (Ed[x] + len) * p * (deg[x] - 2) / (deg[x] - 1);
DFS_U(nxt[x], nxt, nxtw, t, len + nxtw[x], p / (deg[x] - 1));
} else
t += (Ed[x] + len) * p;
}
 
bool DFS_C(int x, edge* r = NULL) {
vis[x] = true;
for(edge* e = H[x]; e; e = e->n) if(e != r) {
L[e->t] = x;
R[x] = e->t;
Lw[e->t] = Rw[x] = e->w;
if(vis[e->t]) {
C = e->t;
return true;
}
if(DFS_C(e->t, E + ((e - E) ^ 1))) return true;
}
return false;
}
 
void Init() {
scanf("%d%d", &N, &M);
int u, v, w;
for(int i = 0; i < M; i++) {
scanf("%d%d%d", &u, &v, &w);
u--, v--;
AddEdge(u, v, w);
AddEdge(v, u, w);
}
}
 
void Work() {
double ans = 0;
if(M < N) {
memset(vis, 0, sizeof vis);
DFS_D(Root = 0);
memset(vis, 0, sizeof vis);
Eu[0] = 0;
DFS_U(Root = 0);
ans = Ed[0];
for(int i = 1; i < N; i++)
ans += (Ed[i] * (deg[i] - 1) + Eu[i]) / deg[i];
} else {
memset(vis, 0, sizeof vis);
DFS_C(0);
Root = C;
do {
memset(vis, 0, sizeof vis);
vis[L[Root]] = vis[R[Root]] = true;
DFS_D(Root);
} while((Root = L[Root]) != C);
Root = C;
do {
DFS_U(L[Root], L, Lw, Eu[Root], Lw[Root]);
DFS_U(R[Root], R, Rw, Eu[Root], Rw[Root]);
} while((Root = L[Root]) != C);
Root = C;
do {
memset(vis, 0, sizeof vis);
vis[L[Root]] = vis[R[Root]] = true;
DFS_U(Root);
} while((Root = L[Root]) != C);
memset(vis, 0, sizeof vis);
Root = C;
do {
ans += (Ed[Root] * (deg[Root] - 2) + Eu[Root] * 2) / deg[Root];
vis[Root] = true;
} while((Root = L[Root]) != C);
for(int i = 0; i < N; i++)
if(!vis[i]) ans += (Ed[i] * (deg[i] - 1) + Eu[i]) / deg[i];
}
printf("%.5lf\n", ans / N);
}
 
int main() {
Init();
Work();
return 0;
}

---------------------------------------------------------------------------------------------

2878: [Noi2012]迷失游乐园

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 752  Solved: 443
[Submit][Status][Discuss]

Description

放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩。进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点、m条道路的无向连通图,且该图中至多有一个环(即m只可能等于n或者n-1)。小Z现在所在的大门也正好是一个景点。小Z不知道什么好玩,于是他决定,从当前位置出发,每次随机去一个和当前景点有道路相连的景点,并且同一个景点不去两次(包括起始景点)。贪玩的小Z会一直游玩,直到当前景点的相邻景点都已经访问过为止。小Z所有经过的景点按顺序构成一条非重复路径,他想知道这条路径的期望长度是多少?小Z把游乐园的抽象地图画下来带回了家,可是忘了标哪个点是大门,他只好假设每个景点都可能是大门(即每个景点作为起始点的概率是一样的)。同时,他每次在选择下一个景点时会等概率地随机选择一个还没去过的相邻景点。

Input

第一行是两个整数n和m,分别表示景点数和道路数。 接下来行,每行三个整数Xi, Yi, Wi,分别表示第i条路径的两个景点为Xi, Yi,路径长Wi。所有景点的编号从1至n,两个景点之间至多只有一条道路。

Output

共一行,包含一个实数,即路径的期望长度,保留五位小数

Sample Input

4 3
1 2 3
2 3 1
3 4 4

Sample Output

6.00000

【样例解释】样例数据中共有6条不同的路径: 路径 长度 概率
1-->4 8 1/4
2-->1 3 1/8
2-->4 5 1/8
3-->1 4 1/8
3-->4 4 1/8
4-->1 8 1/4
因此期望长度 = 8/4 + 3/8 + 5/8 + 4/8 + 4/8 + 8/4 = 6.00
【评分方法】本题没有部分分,你程序的输出只有和标准答案的差距不超过0.01时,才能获得该测试点的满分,否则不得分。
【数据规模和约定】对于100%的数据,1 <= Wi <= 100。 测试点编号 n m 备注
1 n=10 m = n-1 保证图是链状
2 n=100 只有节点1的度数大于2
3 n=1000 /
4 n=100000 /
5 n=100000 /
6 n=10 m = n /
7 n=100 环中节点个数<=5
8 n=1000 环中节点个数<=10
9 n=100000 环中节点个数<=15
10 n=100000 环中节点个数<=20

HINT

Source

BZOJ 2878: [Noi2012]迷失游乐园( 树形dp )的更多相关文章

  1. bzoj 2878 [Noi2012]迷失游乐园——树上的期望dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2878 很好的树上概率题的思路,就是分成up和down. 代码中有众多小细节.让我弃疗好几天的 ...

  2. bzoj 2878: [Noi2012]迷失游乐园【树上期望dp+基环树】

    参考:https://blog.csdn.net/shiyukun1998/article/details/44684947 先看对于树的情况 设d[u]为点u向儿子走的期望长度和,du[u]为u点的 ...

  3. bzoj 2878: [Noi2012]迷失游乐园

    #include<iostream> #include<cstring> #include<cstdio> #define M 100005 #define ld ...

  4. bzoj2878 [Noi2012]迷失游乐园 [树形dp]

    Description 放假了,小Z认为呆在家里特别无聊.于是决定一个人去游乐园玩. 进入游乐园后.小Z看了看游乐园的地图,发现能够将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环 ...

  5. 【BZOJ 2878】 2878: [Noi2012]迷失游乐园 (环套树、树形概率DP)

    2878: [Noi2012]迷失游乐园 Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m ...

  6. [luogu2081 NOI2012] 迷失游乐园 (树形期望dp 基环树)

    传送门 题目描述 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩. 进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环(即m ...

  7. 2878: [Noi2012]迷失游乐园 - BZOJ

    Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环( ...

  8. Luogu P2081 [NOI2012]迷失游乐园 | 期望 DP 基环树

    题目链接 基环树套路题.(然而各种错误调了好久233) 当$m=n-1$时,原图是一棵树. 先以任意点为根做$dp$,求出从每一个点出发,然后只往自己子树里走时路径的期望长度. 接着再把整棵树再扫一遍 ...

  9. BZOJ 2878([Noi2012]-失落的游乐园树DP+出站年轮加+后市展望DP+vector的erase)

    2878: [Noi2012]迷失乐园 Time Limit: 10 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 319  Solved:  ...

随机推荐

  1. Sublime Text 3 无法使用package control安装插件解决办法

    Crossing's Blog NOT Genius but Try Best 首页 分类 关于 归档 标签 问题貌似出现在liveStyle版本更新之后,因为打算安装javascript next和 ...

  2. java整体集合框架

    1.关于集合的两道面试题 先来看几道题目: 1.创建一个不可变的的集合: public static void main(String[] args) { Set<String> set ...

  3. Nhibernate 映射关系,一对多 多对一与多对手在映射文件中的体现。

    今天做了第一个Nhibernate项目,摸着石头过河,学到了一些东西,在这里将自己总结体会到的一些映射关系写出来,与大家分享,由于是初学者,如果有不对的地方希望大家能够指出来. 首先要说明要建立的几张 ...

  4. Android_使用getIdentifier()获取资源Id

    Android 获取资源ID的另外一种方法,常规获取ID是在特定的文件夹下面的资源,如果在比较特殊的文件夹下面,就需要其他方法获取ID 了: 使用getIdentifier()方法可以方便的获各应用包 ...

  5. VB2012读取xml

    上回谢了生成写xml的,现在把读取的补上 文件如下 <?xml version="1.0" encoding="UTF-8" standalone=&qu ...

  6. Python学习之编写三级菜单(Day1,作业二)

    作业二:多级菜单 三级菜单 可依次进入各子菜单 在各级菜单中输入B返回上一级Q退出程序 知识点:字典的操作,while循环,for循环,if判断 思路: 1.开始,打印一级菜单让用户进行选择(可以输入 ...

  7. DataTables warning 错误警告

    今天使用 Charisma 框架的 jquery datatable 插件时出现如下错误: 搜索才发现 DataTables 目前不支持有单元格合并的表格.而且只要单元格数目不同就会有错误,不能使用搜 ...

  8. 未能加载文件或程序集 Microsoft.ReportViewer.Common, Version=11.0.0.0

    原文:未能加载文件或程序集 Microsoft.ReportViewer.Common, Version=11.0.0.0 System.IO.FileNotFoundException: 未能加载文 ...

  9. php快递查询

    http://www.oschina.net/code/snippet_60100_25087 <?php class Express { private $expressname =array ...

  10. 解决 MySQL manager or server PID file could not be found! 的方法

    [root@centos var]# service mysqld stop MySQL manager or server PID file could not be found!       [F ...