Problem Description

With the 60th anniversary celebration of Nanjing University of Science and Technology coming soon, the university sets n tourist spots to welcome guests. Of course, Redwood forests in our university and its Orychophragmus violaceus must be recommended as top ten tourist spots, probably the best of all. Some undirected roads are made to connect pairs of tourist spots. For example, from Redwood forests (suppose it’s a) to fountain plaza (suppose it’s b), there may exist an undirected road with its length c. By the way, there is m roads totally here. Accidently, these roads’ length is an integer, and all of them are different. Some of these spots can reach directly or indirectly to some other spots. For guests, they are travelling from tourist spot s to tourist spot t, they can achieve some value f. According to the statistics calculated and recorded by us in last years, We found a strange way to calculate the value f:
From s to t, there may exist lots of different paths, guests will try every one of them. One particular path is consisted of some undirected roads. When they are travelling in this path, they will try to remember the value of longest road in this path. In the end, guests will remember too many longest roads’ value, so he cannot catch them all. But, one thing which guests will keep it in mind is that the minimal number of all these longest values. And value f is exactly the same with the minimal number.
Tom200 will recommend pairs (s, t) (start spot, end spot points pair) to guests. P guests will come to visit our university, and every one of them has a requirement for value f, satisfying f>=t. Tom200 needs your help. For each requirement, how many pairs (s, t) you can offer?
 
Input

Multiple cases, end with EOF.
First line:n m
n tourist spots ( <n<=), spots’ index starts from .
m undirected roads ( <m<=). Next m lines, integers, a b c
From tourist spot a to tourist spot b, its length is c. <a, b<n, c(<c<), all c are different. Next one line, integer, p (<p<=)
It means p guests coming. Next p line, each line one integer, t(<=t)
The value t you need to consider to satisfy f>=t.
 
Output

 For each guest's requirement value t, output the number of pairs satisfying f>=t.
Notice, (,), (,) are different pairs.
 
Sample Input

 
Sample Output

 
Source
 
 

题目大意:

给一无向图,n个点,m条边,每条边有个长度,且不一样。定义f(i,j)表示从节点i到节点j的所有路径中的最大边权值的最小值。有q个询问,每个询问有个t,求f(i,j)>=t的种数。

解题思路:

并查集+简单dp+二分。

思路,先按边从小到大排序考虑,对于每条边E该边两个节点为a、b,如果a、b不在同一个联通块,则a联通块中点集A和b联通块中点集B的f值一定为E(因为E升序)。恰好能使其通路。

map[i]表示以权值为i的边作为f值的点对个数。

sum[i]表示以大于等于第i大边权值的权值作为f值得点对总的个数。

对于每一个t,在排序了的sig[i](能取的边权值)中二分找到大于等于它的最小的小标j。输出sum[j]即可。

注意:

求点对个数时要乘以2.

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 10006
#define M 600000
#define inf 1e12
int n,m;
struct Node{
int x,y;
int cost;
}node[M];
////////////////////////////////////////////////////
int fa[N];
int cnt[N];
void init(){
for(int i=;i<N;i++){
fa[i]=i;
cnt[i]=;
}
}
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
} //////////////////////////////////////////////////////
bool cmp(Node a,Node b){
return a.cost<b.cost;
}
////////////////////////////////////////////
int a[M];
int b[M];
int sum[M];
int main()
{
while(scanf("%d%d",&n,&m)==){ for(int i=;i<m;i++){
scanf("%d%d%d",&node[i].x,&node[i].y,&node[i].cost); }
sort(node,node+m,cmp); for(int i=;i<m;i++){
b[i]=node[i].cost;
} memset(a,,sizeof(a)); init();
int ans=;
for(int i=;i<m;i++){
int root1=find(node[i].x);
int root2=find(node[i].y);
if(root1==root2) continue;
fa[root1]=root2;
//ans=ans+2*cnt[root1]*cnt[root2];
a[i]=*cnt[root1]*cnt[root2];
cnt[root2]+=cnt[root1]; } memset(sum,,sizeof(sum));
for(int i=m-;i>=;i--){
sum[i]=sum[i+]+a[i];
} int q;
scanf("%d",&q);
while(q--){
int t;
scanf("%d",&t);
int w=lower_bound(b,b+m,t)-b;
printf("%d\n",sum[w]);
} }
return ;
}

hdu 4750 Count The Pairs(并查集+二分)的更多相关文章

  1. hdu 4750 Count The Pairs(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 代码: #include<cstdio> #include<cstring&g ...

  2. HDU 4750 Count The Pairs(并查集)

    题目链接 没有发现那个点,无奈. #include <cstdio> #include <cstring> #include <cmath> #include &l ...

  3. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  4. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  5. 2013南京网赛1003 hdu 4750 Count The Pairs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意:给出一个无向图,f(a,b)表示从点a到点b的所有路径中的每条路径的最长边中的最小值,给出 ...

  6. HDU 4750 Count The Pairs (离线并查集)

    按边从小到大排序. 对于每条边(from, to, dist),如果from和to在同一个集合中,那么这条边无意义,因为之前肯定有比它更小的边连接了from和to. 如果from和to不属于同一个集合 ...

  7. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  8. hdu 4750 Count The Pairs (2013南京网络赛)

    n个点m条无向边的图,对于q个询问,每次查询点对间最小瓶颈路 >=f 的点对有多少. 最小瓶颈路显然在kruskal求得的MST上.而输入保证所有边权唯一,也就是说f[i][j]肯定唯一了. 拿 ...

  9. HDU 3277 Marriage Match III(并查集+二分答案+最大流SAP)拆点,经典

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

随机推荐

  1. [转]XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks

    感谢: XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks XNOR-Net ImageNet Cl ...

  2. XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks

    转载请注明出处: http://www.cnblogs.com/sysuzyq/p/6245186.html by 少侠阿朱

  3. c#调用Excel绘制图表

    c#调用Excel需要引用命名空间 using Microsoft.Office.Interop.Excel; 由于该程序不复杂,主要是根据不同数据画表和图,画的图像也并不复杂,因为画图和画表的操作会 ...

  4. 创建一个jQuery UI的垂直进度条效果

    日期:2013-9-24  来源:GBin1.com 在线演示 缺省的jQuery UI只有水平的进度条效果,没有垂直的进度条效果,仅仅重新定义JQuery UI的CSS不能解决这个问题. 这里我们扩 ...

  5. Ant命令行操作

    Ant命令行操作 Ant构建文件可以将项目编译,打包,測试,它是Apache软件基金会jakarta文件夹中的一个子项目,具有跨平台性,操作简单,并且非常easy上手. 关于Ant执行,能够在项目中找 ...

  6. css中的伪类

    伪类用于向某些选择器添加一些特殊效果. 1):focus 伪类在元素获得焦点的时向元素添加特殊样式.一般用于输入文本域,按钮,以及超链接. a:focus{color:red;}超链接字体为红色 in ...

  7. ASP.NET 导出Excel文档

    System.IO.TextWriter writer = new System.IO.StreamWriter(Server.MapPath("/provprice.xls"), ...

  8. border-radius讲解1

    如今CSS3中的border-radius出现后,让我们没有那么多的烦恼了,首先制作圆角图片的时间是省了,而且其还有多个优点:其一减少网站的维护的工作量,少了对图片的更新制作,代码的替换等等;其二.提 ...

  9. js-String

    1.一个字符串可以使用单引号或双引号 2.查找 字符串使用 indexOf() 来定位字符串中某一个指定的字符首次出现的位置 如果没找到对应的字符函数返回-1 lastIndexOf() 方法在字符串 ...

  10. checkbox 实现单选效果(html)

    note:在html <input> 标签类中的checkbox实现单选效果. 在最近的开发项目中,客户要求使用小方格子实现“单选”功能,显然圆点的radio被out了,只能选择chckb ...