dp(i,j)表示1~i的全部排列中逆序对数为j的个数.

从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ≤ j) 用前缀和优化就可以做到O(N2)了

---------------------------------------------------------------------

#include<bits/stdc++.h>
 
using namespace std;
 
const int maxn = 1009;
const int MOD = 10000;
 
int N, K, dp[maxn][maxn], cnt[maxn];
 
int main() {
scanf("%d%d", &N, &K);
memset(dp, 0, sizeof dp);
dp[0][1] = 1;
for(int i = 0; i <= K; i++) cnt[i] = 1;
for(int i = 1; i <= N; i++) {
for(int j = 0; j <= K; j++) {
dp[i][j] = cnt[j];
if(j - i >= 0)
dp[i][j] -= cnt[j - i];
if(dp[i][j] < 0)
dp[i][j] += MOD;
else if(dp[i][j] >= MOD)
dp[i][j] -= MOD;
}
cnt[0] = dp[i][0];
for(int j = 1; j <= K; j++) {
cnt[j] = cnt[j - 1] + dp[i][j];
if(cnt[j] >= MOD)
cnt[j] -= MOD;
}
}
printf("%d\n", dp[N][K]);
return 0;
}

---------------------------------------------------------------------

2431: [HAOI2009]逆序对数列

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 1228  Solved: 712
[Submit][Status][Discuss]

Description

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

Input

第一行为两个整数n,k。

Output

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。


Sample Input

样例输入

4 1

Sample Output

样例输出

3

样例说明:

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;

测试数据范围

30%的数据 n<=12

100%的数据 n<=1000,k<=1000

HINT

Source

BZOJ 2431: [HAOI2009]逆序对数列( dp )的更多相关文章

  1. BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2431 题意: 给定n,k,问你有多少个由1~n组成的排列,使得逆序对个数恰好为k个. 题解 ...

  2. BZOJ 2431: [HAOI2009]逆序对数列【dp】

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序 ...

  3. Bzoj 2431 HAOI2009 逆序对数列

    Description 对于一个数列{ai},如果有i**<**j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数. ...

  4. [bzoj 2431][HAOI2009]逆序对数列(递推+连续和优化)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2431 分析: f(i,j)表示前i个数字逆序对数目为j时候的方案数 那么有f(i,j) ...

  5. 2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status ...

  6. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  7. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  8. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  9. [BZOJ2431][HAOI2009]逆序对数列(DP)

    从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...

随机推荐

  1. POJ_1698_Alice's Chance

    #include <iostream> #include <queue> #include <climits> #include <cstring> u ...

  2. 【转】DevExpress控件安装

    原文链接: DevExpress控件安装.汉化使用教程 - 田园里的蟋蟀 学习网址: 1.DevExpress控件中文网 2.DevExpress控件中文网使用教程 3.DevExpress控件使用经 ...

  3. HTML+CSS笔记 CSS进阶再续

    CSS的布局模型 清楚了CSS 盒模型的基本概念. 盒模型类型, 我们就可以深入探讨网页布局的基本模型了.布局模型与盒模型一样都是 CSS 最基本. 最核心的概念. 但布局模型是建立在盒模型基础之上, ...

  4. SSL握手流程

    一.SSL是什么? 安全套接字(SSL)协议是Web浏览器和Web服务器之间安全交换信息的协议. SSL介于应用层和TCP层之间,应用层数据不再直接传递给传输层,而是传递给SSL层,SSL层对从应用层 ...

  5. C语言实现约瑟夫环讨论

    [问题描述]     约瑟夫(Joseph)问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数).一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针 ...

  6. ASP.NET 使用My97DatePicker日期控件

    首先要下载该控件的包,下载地址:http://pan.baidu.com/s/1Aa5gk 引用文件 <script src="js/My97DatePicker/WdatePicke ...

  7. 深入剖析哪些服务是Oracle 11g必须开启的

    这篇文章主要介绍了哪些服务是Oracle 11g必须开启的以及这些服务的详细介绍,需要的朋友可以参考下   成功安装Oracle 11g数据库后,你会发现自己电脑运行速度会变慢,配置较低的电脑甚至出现 ...

  8. Spring Boot Memory Performance

    The Performance Zone is brought to you in partnership with New Relic. Quickly learn how to use Docke ...

  9. HDU 1983 Kaitou Kid - The Phantom Thief (2)

    神题,搜索太差,来自网络的题解与程序 思路: 封锁出口或者入口周围的格子. 最多需要4个封锁点. 所以我们可以采取这样的策略: 1.寻找一条盗贼的可行路线,如果没有,返回0. 2.计算封锁出口和入口四 ...

  10. JAVA GUI学习 - 窗口【x】按钮关闭事件触发器:重写processWindowEvent(WindowEvent e)方法

    public class WindowListenerKnow extends JFrame { public WindowListenerKnow() { this.setBounds(300, 1 ...