Sightseeing Cows(最优比率环)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 8915 | Accepted: 3000 |
Description
Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.
Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.
While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.
The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.
In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.
Help the cows find the maximum fun value per unit time that they can achieve.
Input
* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti
Output
* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.
Sample Input
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
Sample Output
6.00
题解:
题意就是,这个人带牛旅行,旅行每个城市会有幸福度,通过每个城市会花费时间,让找平均每秒的最大幸福度;
最短路01分数规划,也就是最优比率环问题;刚开始用了Bellman各种超时,换了SPFA也是,最后把INF改大了,SPFA过了,最后想想BELLMAN的时间复杂度N*M又改了种写法,就各种wa了,真心疲惫;
SPFA:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define mem(x,y) memset(x,y,sizeof(x))
using namespace std;
const int INF=10000000000000;
typedef long long LL;
const int MAXN=1010;
const int MAXM=100010;
/*struct Node{
int u,v;
double t;
};
Node dt[MAXM];*/
struct Edge{
int from,to,next,t;
};
Edge edg[MAXM];
int head[MAXM];
int edgnum;
void add(int u,int v,int t){
Edge E={u,v,head[u],t};
edg[edgnum]=E;
head[u]=edgnum++;
}
int L,P;
double hp[MAXN],dis[MAXN];
int usd[MAXN],vis[MAXN];
/*void add(int u,int v,double t){
Node E={u,v,t};
dt[edgnum++]=E;
}*/
//double R;
/*bool Bellman(){
mem(dis,INF);
mem(usd,0);
dis[1]=0;
while(1){
int temp=0;
for(int j=0;j<edgnum;j++){
int u=dt[j].u,v=dt[j].v;
double t=dt[j].t;
//dis[v]=min(dis[v],dis[u]+R*t-hp[u]);//应该是R*t-hp[u];
if(dis[v]>dis[u]+R*t-hp[u])usd[v]++,dis[v]=dis[u]+R*t-hp[u],temp=1;
if(usd[v]>L)return false;
}
if(!temp)return true;
}
}*/
bool SPFA(double R){
queue<int>dl;
while(!dl.empty())dl.pop();
for(int i=1;i<=L;i++){
dis[i]=INF;
vis[i]=0;
usd[i]=0;
}
dl.push(1);
vis[1]=1;
usd[1]++;
dis[1]=0;
while(!dl.empty()){
int u=dl.front();
dl.pop();
vis[u]=0;
for(int i=head[u];i!=-1;i=edg[i].next){
int v=edg[i].to,t=edg[i].t;
if(dis[v]>dis[u]+R*t-hp[u]){
dis[v]=dis[u]+R*t-hp[u];
if(!vis[v]){
vis[v]=1;
usd[v]++;
dl.push(v);
// printf("%d\n",usd[v]);
if(usd[v]>=L)return false;
}
}
}
}
return true;
}
int main(){
int a,b;
int c;
while(~scanf("%d%d",&L,&P)){
edgnum=0;
double mih=INF,mxh=-INF;
int mit=INF,mxt=-INF;
mem(head,-1);
for(int i=1;i<=L;i++){
scanf("%lf",hp+i);
mih=min(mih,hp[i]);
mxh=max(mxh,hp[i]);
}
while(P--){
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
mit=min(mit,c);
mxt=max(mxt,c);
}
double l=mih/mxt,r=mxh/mit;
// printf("%f %f\n",l,r);
double R;
while(r-l>=0.001){
R=(l+r)/2;
if(SPFA(R))r=R;
else l=R;
}
printf("%.2f\n",l);
}
return 0;
}
Bellman还在wa,贴上求大神帮忙看看;
wa代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define mem(x,y) memset(x,y,sizeof(x))
using namespace std;
const int INF=;
typedef long long LL;
const int MAXN=;
const int MAXM=;
struct Node{
int u,v;
int t;
};
Node dt[MAXM];
/*struct Edge{
int from,to,next,t;
};
Edge edg[MAXM];
int head[MAXM];*/
int edgnum;
/*void add(int u,int v,int t){
Edge E={u,v,head[u],t};
edg[edgnum]=E;
head[u]=edgnum++;
}*/
int L,P;
double hp[MAXN],dis[MAXN];
int usd[MAXN],vis[MAXN];
void add(int u,int v,int t){
Node E={u,v,t};
dt[edgnum++]=E;
}
//double R;
bool Bellman(double R){
for(int i=;i<=L;i++){
usd[i]=;
dis[i]=INF;
}
dis[]=;
usd[]++;
while(){
int temp=;
for(int j=;j<edgnum;j++){
int u=dt[j].u,v=dt[j].v;
int t=dt[j].t;
//dis[v]=min(dis[v],dis[u]+R*t-hp[u]);//应该是R*t-hp[u];
if(dis[v]>dis[u]+R*t-hp[u])dis[v]=dis[u]+R*t-hp[u],temp=,usd[v]++;
if(usd[v]>=L)return false;
}
if(!temp)return true;
}
/*for(int j=0;j<edgnum;j++){
int u=dt[j].u,v=dt[j].v;
int t=dt[j].t;
if(dis[v]>dis[u]+R*t-hp[u])return false;
}
return true;*/
}
/*bool SPFA(double R){
queue<int>dl;
while(!dl.empty())dl.pop();
for(int i=1;i<=L;i++){
dis[i]=INF;
vis[i]=0;
usd[i]=0;
}
dl.push(1);
vis[1]=1;
usd[1]++;
dis[1]=0;
while(!dl.empty()){
int u=dl.front();
dl.pop();
vis[u]=0;
for(int i=head[u];i!=-1;i=edg[i].next){
int v=edg[i].to,t=edg[i].t;
if(dis[v]>dis[u]+R*t-hp[u]){
dis[v]=dis[u]+R*t-hp[u];
if(!vis[v]){
vis[v]=1;
usd[v]++;
dl.push(v);
// printf("%d\n",usd[v]);
if(usd[v]>=L)return false;
}
}
}
}
return true;
}*/
int main(){
int a,b;
int c;
while(~scanf("%d%d",&L,&P)){
edgnum=;
// double mih=INF,mxh=-INF,mit=INF,mxt=-INF;
//mem(head,-1);
for(int i=;i<=L;i++){
scanf("%lf",hp+i);
// mih=min(mih,hp[i]);
// mxh=max(mxh,hp[i]);
}
while(P--){
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
//mit=min(mit,c);
// mxt=max(mxt,c);
}
double l=,r=;
// printf("%f %f\n",l,r);
double ans=;
double R;
while(r-l>=0.001){
R=(l+r)/;
if(Bellman(R))r=R;
else ans=R,l=R;
}
printf("%.2f\n",ans);
}
return ;
}
Sightseeing Cows(最优比率环)的更多相关文章
- POJ3621 Sightseeing Cows 最优比率环 二分法
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ3621 Sightseeing Cows(最优比率环)
题目链接:id=3621">http://poj.org/problem?id=3621 在一个有向图中选一个环,使得环上的点权和除以边权和最大.求这个比值. 经典的分数规划问题,我认 ...
- POJ 3621 Sightseeing Cows [最优比率环]
感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...
- [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环
01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...
- poj 3621(最优比率环)
题目链接:http://poj.org/problem?id=3621 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优比率环,很是熟悉,可惜精度没控制好,要不就是wa,要不 ...
- POJ 3621-Sightseeing Cows-最优比率环|SPFA+二分
最优比率环问题.二分答案,对于每一个mid,把节点的happy值归类到边上. 对于每条边,用mid×weight减去happy值,如果不存在负环,说明还可以更大. /*---------------- ...
- 【poj3621】最优比率环
题意: 给定n个点,每个点有一个开心度F[i],每个点有m条单向边,每条边有一个长度d,要求一个环,使得它的 开心度的和/长度和 这个比值最大.n<=1000,m<=5000 题解: 最优 ...
- POJ 3621 Sightseeing Cows (最优比率环 01分数划分)
题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...
- POJ 3621:Sightseeing Cows(最优比率环)
http://poj.org/problem?id=3621 题意:有n个点m条有向边,每个点有一个点权val[i],边有边权w(i, j).找一个环使得Σ(val) / Σ(w)最大,并输出. 思路 ...
随机推荐
- Unity5UGUI 官方教程学习笔记(三)UI BUTTON
Button Interactable :为了避免与该按钮产生交互,可以设置它为false Transition: 管理按钮在正常情况 ,按下,经过时的显示状态 None 按钮整正常工作 但是在按 ...
- (4)事件处理——(3)代码执行的顺序(Timing of code execution)
In Chapter 1, Getting Started, we noted that $(document).ready()was jQuery's primary way to perform ...
- tomcat无法正常启动的一个原因
简要报错信息: java.lang.IllegalArgumentException: Document base E:\apache-tomcat-7.0.65\webapps\springmvc0 ...
- Android 内部存储安装apk文件实现
目前国内市场的山寨机横行,安卓手机升级也是一天一个样,对于原来老手机可能没有SDCARD,导致我们的APP不能下载资源,无法更新APP,针对这种情况有以下解决方案.通过以下函数判断是否有SD卡再判断下 ...
- CSS完美兼容IE6/IE7/IE8/IE9/IE10的通用方法
关于CSS对各个浏览器兼容已经是老生常谈的问题了, 网络上的教程遍地都是.以下内容没有太多新颖, 纯属个人总结, 希望能对初学者有一定的帮助. 一.CSS HACK 以下两种方法几乎能解决现今所有HA ...
- 在sqlite中使用索引
出处: 网络 1)Sqlite不支持聚集索引,android默认需要一个_id字段,这保证了你插入的数据会按“_id”的整数顺序插入,这个integer类型的主键就会扮演和聚集索引一样的角色.所以不要 ...
- java使用验证码进行登录验证
随机生成4位验证码,将生成的4位数字字母数字放入session private static void outputVerifyCode(HttpServletRequest request, Htt ...
- opencv-python 学习笔记1:简单的图片处理
一.主要函数 1. cv2.imread():读入图片,共两个参数,第一个参数为要读入的图片文件名,第二个参数为如何读取图片,包括cv2.IMREAD_COLOR:读入一副彩色图片:cv2.IMREA ...
- js颜色转换
很久之前面试遇到过一个题.写个颜色转换的方法. function RGB2Color(r,g,b) { return '#' + byte2Hex(r) + byte2Hex(g) + byte2He ...
- SSIS: 使用Lookup 和 Cache transformation 进行数据匹配简单介绍
本文将讲解Cache transformation的使用方式,并且用Lookup transformation进行匹配. 背景 如下图,我们的产品目标表中有些有尺寸信息有些没有.我们需要用Cache组 ...