UVA442 栈
Crawling in process... Crawling failed Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Description
Matrix Chain Multiplication
Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.
Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.
Input Specification
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n ( ), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):
SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
Output Specification
For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.
Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))
Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125
题目大意:给你若干个矩阵(x*y),然后给你若干种计算公式,问你在该种计算公式情况下能否进行矩阵乘法运算,
若能进行,输出需进行乘法的次数。
思路分析:首先要对矩阵的乘法运算有一定了解,首先,A(x*y)和B(x*y)矩阵能否进行A*B运算的充要条件是是否满足
A.y==B.x,如果满足,则会得到矩阵C(A.x*B.y),这次运算进行的乘法的次数是A,x*A.y*B.y.下面就考虑如何进行
实现,首先括号里面是优先计算的,也就是说我们刚开始要计算的是最内层的括号里面的表达式,也就是在碰到第一个“)”
进行运算的表达式,每碰到一个”)“,就要进行一次矩阵运算,因此可以考虑用栈这种数据结构来实现,碰到”)“就进行
矩阵运算,把运算得到的矩阵再压入栈中,对于每一个矩阵,需要维护的信息是它的x和y,矩阵的类型可以用数组下标来区分。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <string>
#include <queue>
#include <stack>
using namespace std;
const int maxn=30;
struct nod
{
int x;
int y;
};
nod mat[maxn];
stack<nod> sta;
int main()
{
int n,i;
cin>>n;
char s;
int a,b;
char q[100];
memset(mat,0,sizeof(mat));
while(n--)
{
cin>>s>>a>>b;
int i=s-'A';
mat[i].x=a;
mat[i].y=b;
}
int sum;
while(scanf("%s",q)!=EOF)
{
sum=0;
int l=strlen(q);
for( i=0;i<l;i++)
{
if(q[i]=='(') continue;
if(q[i]>='A'&&q[i]<='Z')
{
int k=q[i]-'A';
sta.push(mat[k]);
}
if(q[i]==')')
{
nod m,k,w;
m=sta.top();
sta.pop();
k=sta.top();
sta.pop();
if(k.y!=m.x)
break;
w.x=k.x,w.y=m.y;
sta.push(w);
sum+=k.x*k.y*m.y;
}
}
if(i==l) cout<<sum<<endl;
else cout<<"error"<<endl;
}
return 0;
}
UVA442 栈的更多相关文章
- 【UVa-442】矩阵链乘——简单栈练习
题目描述: 输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. Sample Input 9 A 50 10 B 10 20 C 20 5 D 30 35 E ...
- UVA442 Matrix Chain Multiplication 矩阵运算量计算(栈的简单应用)
栈的练习,如此水题竟然做了两个小时... 题意:给出矩阵大小和矩阵的运算顺序,判断能否相乘并求运算量. 我的算法很简单:比如(((((DE)F)G)H)I),遇到 (就cnt累计加一,字母入栈,遇到) ...
- ACM学习历程——UVA442 Matrix Chain Multiplication(栈)
Description Matrix Chain Multiplication Matrix Chain Multiplication Suppose you have to evaluate ...
- UVa442 Matrix Chain Multiplication(栈)
#include<cstdio>#include<cstring> #include<stack> #include<algorithm> #inclu ...
- UVa442 Matrix Chain Multiplication
// UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...
- UVa 442 Matrix Chain Multiplication(栈的应用)
题目链接: https://cn.vjudge.net/problem/UVA-442 /* 问题 输入有括号表示优先级的矩阵链乘式子,计算该式进行的乘法次数之和 解题思路 栈的应用,直接忽视左括号, ...
- Uva442
https://vjudge.net/problem/UVA-442 思路: 1)当遇到左括号将字母进栈,遇到右括号将字母出栈. 2) isalpha() 判断一个字符是否是字母 int isalph ...
- 通往全栈工程师的捷径 —— react
腾讯Bugly特约作者: 左明 首先,我们来看看 React 在世界范围的热度趋势,下图是关键词“房价”和 “React” 在 Google Trends 上的搜索量对比,蓝色的是 React,红色的 ...
- Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)
--reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...
随机推荐
- (转)函数中使用 ajax 异步 同步 返回值错误 主函数显示返回值总是undefined -- ajax使用总结
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAloAAAE0CAIAAAB7LwoKAAAgAElEQVR4nO2dy6sc152A6+/R2mXwSn ...
- div需要重置吗?
看看所有常用标签的默认margin.padding?Demo戳这里 - - 当你每次看到为那一长串标签设置margin: 0; padding: 0; 的时候,你是否想看看哪些标签,在哪些浏览器里有默 ...
- JS模拟键盘事件 -- 原理及小例子
提问: 键盘默认事件,比如tab切换,alt+f4关闭,ctrl+t新建等,如果不想通过键盘而是一些按钮点击来触发这些功能,该咋办呢? 例子: 先以tab为例上一个小例子: <!DOCTYPE ...
- 什么叫CallBack函数,怎么用回调函数?
JQuery众多常用方法中很经常会用到回调函数, 理解好js callback函数定义及用法,我们就可以利用callback函数帮我们做很多事情啦! A callback is a function ...
- 背包问题lingo求解
大家好,我是小鸭酱,博客地址为:http://www.cnblogs.com/xiaoyajiang !背包问题 题目: 8件物品 重量分别为 1,3,4,3,3,1,5,10 价值分别为 2,9 ...
- 如何在Ubuntu安装*.exe文件
下载及安装 若你使用 Debian 或者 Ubuntu 之类的发行版,只需要一个命令即可完成安装: apt-get install wine 若你使用的为其他发行版,请访问 http://winehq ...
- 最牛B的编码套路 【转】
原文:http://blog.csdn.net/happydeer/article/details/17023229 最近,我大量阅读了Steve Yegge的文章.其中有一篇叫“Practicing ...
- 使用Volley StringRequest Get的方式进行发票查询操作
//进行发票查询 btnFpSelect.setOnClickListener(btnFpSelectClickListener); private OnClickListener btnFpSele ...
- Visio 下载,及密钥
Visio2010简体中文高级版(永久激活密钥:GR24B-GC2XY-KRXRG-2TRJJ-4X7DC) ed2k://|file|cn_visio_2010_x64_516562.exe|515 ...
- 了解 Windows Azure 存储的可伸缩性、可用性、持久性和计费
借助 Windows Azure存储,应用程序开发者及其应用程序和用户可以在云中使用可用性更高.持久性更长.可伸缩性更强的海量存储.开发者可以构建能随时随地高效访问数据的服务,在所需的时间段内存储任意 ...