正整数分组

将一堆正整数分为2组,要求2组的和相差最小。
例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的。

思路:

这题的实质其实也是0-1背包问题,但是要想理解到这一步,或者说想要用0-1背包来解决这个问题,就必须将问题抽象化到一定的程度才可以。

一列数,无序,给他分成两半,要想实现两半的和的差最小,就是恨不得恰好均分了。那么我们按照0-1背包的那种”一维式“的思维来想,这个问题就别转化成了从第一个数开始到最后一个数,选出一些数,使他们的和最大程度的接近所有数的和的一半,将这些数作为一组,那么剩下的数就是另一组了。

按照之前0-1背包的思路,这题就迎刃而解了。


#include <cmath>
#define INF 65535
using namespace std; int n;
int f[];
int sum;
int num[]; int main()
{
int other;
while(~scanf("%d",&n))
{
sum = ;
for(int i = ;i <= n;i++){
scanf("%d",&num[i]);
sum += num[i];
}
memset(f,,sizeof(f));
for(int i = ;i <= n;i++)
for(int j = sum/;j >= num[i];j--)
f[j] = max(f[j],f[j-num[i]]+num[i]);
other = sum - f[sum/];
printf("%d\n",abs(other-f[sum/]));
}
return ;
}

51nod-正整数分组问题(基础方程DP-01背包)的更多相关文章

  1. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  2. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  3. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

  4. HDOJ(HDU).2546 饭卡(DP 01背包)

    HDOJ(HDU).2546 饭卡(DP 01背包) 题意分析 首先要对钱数小于5的时候特别处理,直接输出0.若钱数大于5,所有菜按价格排序,背包容量为钱数-5,对除去价格最贵的所有菜做01背包.因为 ...

  5. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  6. UVA.10130 SuperSale (DP 01背包)

    UVA.10130 SuperSale (DP 01背包) 题意分析 现在有一家人去超市购物.每个人都有所能携带的重量上限.超市中的每个商品有其相应的价值和重量,并且有规定,每人每种商品最多购买一个. ...

  7. BZOJ 4145: [AMPPZ2014]The Prices( 状压dp + 01背包 )

    我自己只能想出O( n*3^m )的做法....肯定会T O( nm*2^m )做法: dp( x, s ) 表示考虑了前 x 个商店, 已买的东西的集合为s. 考虑转移 : 先假设我们到第x个商店去 ...

  8. - > 动规讲解基础讲解一——01背包(模板)

    作为动态规划的基础,01背包的思想在许多动规问题中会经常出现,so,熟练的掌握01背包的思路是极其重要的: 有n件物品,第i件物品(I = 1,2,3…n)的价值是vi, 重量是wi,我们有一个能承重 ...

  9. poj 2923 状压dp+01背包

    好牛b的思路 题意:一系列物品,用二辆车运送,求运送完所需的最小次数,两辆车必须一起走 解法为状态压缩DP+背包,本题的解题思路是先枚举选择若干个时的状态,总状态量为1<<n,判断这些状态 ...

随机推荐

  1. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  2. Java 编程的动态性,第3部分: 应用反射--转载

    在 上个月的文章中,我介绍了Java Reflection API,并简要地讲述了它的一些基本功能.我还仔细研究了反射的性能,并且在文章的最后给出了一些指导方针,告诉读者在一个应用程序中何时应该使用反 ...

  3. Injecting and Binding Objects to Spring MVC Controllers--转

    I have written two previous posts on how to inject custom, non Spring specific objects into the requ ...

  4. Ubuntu 修改时区和时间

    tzselect #根据提示选择时区 sudo cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime #把设置好的时区文件粘贴到 /etc/local ...

  5. Oracle Linux 挂载存储

    #启动多路径multipathd服务 service multipathd restart #设置开机自动启动multipathd服务 chkconfig multipathd on #查看信息mul ...

  6. 自定义Toast

    简易自定义Toast public class MainActivity extends ListActivity );//边角         gradientDrawable.setGradien ...

  7. ASP.NET-FineUI开发实践-8(二)

    把上回的做一些改进 1.点击grid2的行改变TriggerBox1的值 var v = $(item).find('.x-grid-cell-Name div.x-grid-cell-inner') ...

  8. jQuery事件与动画

    一 事件 1 加载DOM事件 $(document).ready():执行时机:DOM元素准备就绪  执行次数:多次  简单写法:原:$(document).ready(function(){})  ...

  9. 对echarts的简单封装

    看了echarts的官网介绍:http://echarts.baidu.com/doc/example.html 看了网上人使用js对echarts的封装:http://blog.csdn.net/x ...

  10. activiti总结2

    根据流程号查询失败原因. activiti重试机制.齿轮节点.邮件节点.任务节点.ACT_HI_ACTINST历史表.ACT_RU_EXECUTION运行表.看图. 在Eclipse里面自己写个测试方 ...