想学习一下SVM,所以找到了LIBSVM--A Library for Support Vector Machines,首先阅读了一下网站提供的A practical guide to SVM classification.

写一写个人认为主要的精华的东西。

SVMs is:a technique for data classification  

Goal is:to produce a model (based on training data) which predicts the target values of the test data given only the test data attributes.

Kernels:four basic kernels

Proposed Procedure:

1.transform data to the format of an SVM package

  first have to convert categorical attributes into numeric data.We recommend using m numbers to represent an m-category attribute and only one of the m numbers is one,and others are zeros. for example {red,green,blue} can be represented as (0,0,1),(0,1,0)and(1,0,0).

2.conduct simple scaling on the data

  Note:It's importance to use the same scaling factors for training and testing sets.

3.consider the RBF kernel K(x,y) = e-r||x-y||2

4.use cross-validation to find the best parameter C and r

  The cross-validation produce can prevent the overfitting problem.We recommend a "grid-search" on C and r using cross-validation.Various pairs of (C,r)values are tried and the one with the best cross-validation accuarcy is picked.Use a coarse grid to make a better region on the grid,a finer grid search on that region can be conducted.

  For very large data sets a feasible approach is to randomly choose a subset of the data set,conduct grid-search on them,and then do a better-region-only grid-search on the completly data set.

5.use the best parameter C and r to train the whole training set

6.Test

When to use Linear but not RBF Kernel ?

  If the number of features is large, one may not need to map data to a higher dimensional space. That is, the nonlinear mapping does not improve the performance.Using the linear kernel is good enough, and one only searches for the parameter C.

  C.1 Number of instances number of features  

    when the number of features is very large, one may not need to map the data.

  C.2 Both numbers of instances and features are large

    Such data often occur in document classication.LIBLINEAR is much faster than LIBSVM to obtain a model with comparable accuracy.LIBLINEAR is efficient for large-scale document classication.

  C.3 Number of instances number of features

    As the number of features is small, one often maps data to higher dimensional spaces(i.e., using nonlinear kernels).

Learn LIBSVM---a practical Guide to SVM classification的更多相关文章

  1. [笔记]A Practical Guide to Support Vector Classi cation

    <A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...

  2. A Practical Guide to Support Vector Classi cation

    <A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...

  3. A Practical Guide to Distributed Scrum - 分布式Scrum的实用指南 - 读书笔记

    最近读了这本IBM出的<A Practical Guide to Distributed Scrum>(分布式Scrum的实用指南),书中的章节结构比较清楚,是针对Scrum项目进行,一个 ...

  4. 信号处理的好书Digital Signal Processing - A Practical Guide for Engineers and Scientists

    诚心给大家推荐一本讲信号处理的好书<Digital Signal Processing - A Practical Guide for Engineers and Scientists>[ ...

  5. 【SVM】A Practical Guide to Support Vector Classi cation

    零.简介 一般认为,SVM比神经网络要简单. 优化目标:

  6. Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 1

    转自: http://www.confluent.io/blog/stream-data-platform-1/ These days you hear a lot about "strea ...

  7. The Practical Guide to Empathy Maps: 10-Minute User Personas

    That’s where the empathy map comes in. When created correctly, empathy maps serve as the perfect lea ...

  8. Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 2

    转自: http://confluent.io/blog/stream-data-platform-2          http://www.infoq.com/cn/news/2015/03/ap ...

  9. Parsing techniques: a practical guide下载

    轮子哥隆重推荐的书,一行代码.一句公式都没有,但是却什么都讲明白了的:<Parsing Techniques>.第一版官网免费下载,第二版多出来的东西你们用不上不用看了.全书只讲parsi ...

随机推荐

  1. 超级密码(dfs)

    超级密码233 Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  2. HQL和Criteria(转)

    HQL(Hibernate Query Language)        面向对象的查询语言,与SQL不同,HQL中的对象名是区分大小写的(除了JAVA类和属性其他部分不区分大小写):HQL中查的是对 ...

  3. Android中SensorManager.getRotationMatrix函数原理解释

    SensorManager是Android中的一个类,其有一个函数getRotationMatrix,可以计算出旋转矩阵,进而通过getOrientation求得设备的方向(航向角.俯仰角.横滚角). ...

  4. java List与数组互转

    数组转List:String[] arr = new String[] {"str1", "str2"};List<String> list = A ...

  5. MongoDb C/java driver

    1,在linux下安装客户端连接windows下 的MongoDBServer.

  6. Ueditor文本编辑器(新浪SAE平台版本) - 下载频道 - CSDN.NET

    Ueditor文本编辑器(新浪SAE平台版本) - 下载频道 - CSDN.NET Ueditor文本编辑器(新浪SAE平台版本)

  7. HDU 4649 Professor Tian

    Professor Tian Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) T ...

  8. A Corrupt Mayor's Performance Art(线段树区间更新+位运算,颜色段种类)

    A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100 ...

  9. 关于使用Html5 canvas、 map、jquery构造不规则变色点击区域 热点区域

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. css阴影--box-shadow的用法

    原文:http://blog.csdn.net/freshlover/article/details/7610269 text-shadow是给文本添加阴影效果,box-shadow是给元素块添加周边 ...