Learn LIBSVM---a practical Guide to SVM classification
想学习一下SVM,所以找到了LIBSVM--A Library for Support Vector Machines,首先阅读了一下网站提供的A practical guide to SVM classification.
写一写个人认为主要的精华的东西。
SVMs is:a technique for data classification
Goal is:to produce a model (based on training data) which predicts the target values of the test data given only the test data attributes.
Kernels:four basic kernels
Proposed Procedure:
1.transform data to the format of an SVM package
first have to convert categorical attributes into numeric data.We recommend using m numbers to represent an m-category attribute and only one of the m numbers is one,and others are zeros. for example {red,green,blue} can be represented as (0,0,1),(0,1,0)and(1,0,0).
2.conduct simple scaling on the data
Note:It's importance to use the same scaling factors for training and testing sets.
3.consider the RBF kernel K(x,y) = e-r||x-y||2
4.use cross-validation to find the best parameter C and r
The cross-validation produce can prevent the overfitting problem.We recommend a "grid-search" on C and r using cross-validation.Various pairs of (C,r)values are tried and the one with the best cross-validation accuarcy is picked.Use a coarse grid to make a better region on the grid,a finer grid search on that region can be conducted.
For very large data sets a feasible approach is to randomly choose a subset of the data set,conduct grid-search on them,and then do a better-region-only grid-search on the completly data set.
5.use the best parameter C and r to train the whole training set
6.Test
When to use Linear but not RBF Kernel ?
If the number of features is large, one may not need to map data to a higher dimensional space. That is, the nonlinear mapping does not improve the performance.Using the linear kernel is good enough, and one only searches for the parameter C.
C.1 Number of instances number of features
when the number of features is very large, one may not need to map the data.
C.2 Both numbers of instances and features are large
Such data often occur in document classication.LIBLINEAR is much faster than LIBSVM to obtain a model with comparable accuracy.LIBLINEAR is efficient for large-scale document classication.
C.3 Number of instances number of features
As the number of features is small, one often maps data to higher dimensional spaces(i.e., using nonlinear kernels).
Learn LIBSVM---a practical Guide to SVM classification的更多相关文章
- [笔记]A Practical Guide to Support Vector Classication
<A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...
- A Practical Guide to Support Vector Classication
<A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...
- A Practical Guide to Distributed Scrum - 分布式Scrum的实用指南 - 读书笔记
最近读了这本IBM出的<A Practical Guide to Distributed Scrum>(分布式Scrum的实用指南),书中的章节结构比较清楚,是针对Scrum项目进行,一个 ...
- 信号处理的好书Digital Signal Processing - A Practical Guide for Engineers and Scientists
诚心给大家推荐一本讲信号处理的好书<Digital Signal Processing - A Practical Guide for Engineers and Scientists>[ ...
- 【SVM】A Practical Guide to Support Vector Classication
零.简介 一般认为,SVM比神经网络要简单. 优化目标:
- Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 1
转自: http://www.confluent.io/blog/stream-data-platform-1/ These days you hear a lot about "strea ...
- The Practical Guide to Empathy Maps: 10-Minute User Personas
That’s where the empathy map comes in. When created correctly, empathy maps serve as the perfect lea ...
- Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 2
转自: http://confluent.io/blog/stream-data-platform-2 http://www.infoq.com/cn/news/2015/03/ap ...
- Parsing techniques: a practical guide下载
轮子哥隆重推荐的书,一行代码.一句公式都没有,但是却什么都讲明白了的:<Parsing Techniques>.第一版官网免费下载,第二版多出来的东西你们用不上不用看了.全书只讲parsi ...
随机推荐
- RHEL 7.0 修改防火墙配置
RHEL 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙. 关闭firewall: systemctl stop firewalld.service #停止firewal ...
- Keil UV4 BUG(带字库液晶不能显示“数、正、过”问题的请看)
Keil UV3一直存在汉字显示(0xFD)的bug,以前在用到带字库的12864液晶的时候,“数”字总是不能正常显示,后来有网友告诉我这是keil的bug,解决掉了.后来keil升级了,我也换了新版 ...
- TENX_ASM.uew
/L14"TENX ASM" Nocase Line Comment = ; File Extensions = INC ASM LST H /Colors = ,,,,, /Co ...
- HtmlAttribute HTML属性处理类
HtmlAttribute 在HtmlAgilityPack扮演的是一个HTML代码属性的容器,同时提供了用于处理HTML属性的一些功能. 一.属性 int Line { get; } 获取文档中的此 ...
- 使用 asp.net Web API 2的坑
使用工具: Googl 浏览器+PostMan 插件 写了个 控制器 添加了个Action,结果呢?GET 方式请求没问题. POST一直,在服务器端获取不了参数...找了官方的文档 .各种雨里雾 ...
- g++ error: expected ‘)’ before ‘*’ token
原本*号前面的类型是我用typedef自定义的类型的,MyType* const p: 发生这样的错误是,编译器根本不知道MyType是什么东西,这是我在C++多重继承中遇到的.MyType是我在基类 ...
- Reverse Linked List 解答
Question Reverse a singly linked list. Solution 1 -- Iterative Remember to set head.next = null or i ...
- canvas动画文字效果
Doughnut Chartvar c=document.getElementById("canvas");var ctx=c.getContext("2d") ...
- [C# 基础知识系列]专题九: 深入理解泛型可变性
引言: 在C# 2.0中泛型并不支持可变性的(可变性指的就是协变性和逆变性),我们知道在面向对象的继承中就具有可变性,当方法声明返回类型为Stream,我们可以在实现中返回一个FileStream的类 ...
- DropDownList 绑定数据后 插入一条不属于表中的数据
ddlFGiftId.DataSource = dtGift; ddlFGiftId.DataTextField = "FGiftName"; ddlFGiftId.DataVal ...