想学习一下SVM,所以找到了LIBSVM--A Library for Support Vector Machines,首先阅读了一下网站提供的A practical guide to SVM classification.

写一写个人认为主要的精华的东西。

SVMs is:a technique for data classification  

Goal is:to produce a model (based on training data) which predicts the target values of the test data given only the test data attributes.

Kernels:four basic kernels

Proposed Procedure:

1.transform data to the format of an SVM package

  first have to convert categorical attributes into numeric data.We recommend using m numbers to represent an m-category attribute and only one of the m numbers is one,and others are zeros. for example {red,green,blue} can be represented as (0,0,1),(0,1,0)and(1,0,0).

2.conduct simple scaling on the data

  Note:It's importance to use the same scaling factors for training and testing sets.

3.consider the RBF kernel K(x,y) = e-r||x-y||2

4.use cross-validation to find the best parameter C and r

  The cross-validation produce can prevent the overfitting problem.We recommend a "grid-search" on C and r using cross-validation.Various pairs of (C,r)values are tried and the one with the best cross-validation accuarcy is picked.Use a coarse grid to make a better region on the grid,a finer grid search on that region can be conducted.

  For very large data sets a feasible approach is to randomly choose a subset of the data set,conduct grid-search on them,and then do a better-region-only grid-search on the completly data set.

5.use the best parameter C and r to train the whole training set

6.Test

When to use Linear but not RBF Kernel ?

  If the number of features is large, one may not need to map data to a higher dimensional space. That is, the nonlinear mapping does not improve the performance.Using the linear kernel is good enough, and one only searches for the parameter C.

  C.1 Number of instances number of features  

    when the number of features is very large, one may not need to map the data.

  C.2 Both numbers of instances and features are large

    Such data often occur in document classication.LIBLINEAR is much faster than LIBSVM to obtain a model with comparable accuracy.LIBLINEAR is efficient for large-scale document classication.

  C.3 Number of instances number of features

    As the number of features is small, one often maps data to higher dimensional spaces(i.e., using nonlinear kernels).

Learn LIBSVM---a practical Guide to SVM classification的更多相关文章

  1. [笔记]A Practical Guide to Support Vector Classi cation

    <A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...

  2. A Practical Guide to Support Vector Classi cation

    <A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...

  3. A Practical Guide to Distributed Scrum - 分布式Scrum的实用指南 - 读书笔记

    最近读了这本IBM出的<A Practical Guide to Distributed Scrum>(分布式Scrum的实用指南),书中的章节结构比较清楚,是针对Scrum项目进行,一个 ...

  4. 信号处理的好书Digital Signal Processing - A Practical Guide for Engineers and Scientists

    诚心给大家推荐一本讲信号处理的好书<Digital Signal Processing - A Practical Guide for Engineers and Scientists>[ ...

  5. 【SVM】A Practical Guide to Support Vector Classi cation

    零.简介 一般认为,SVM比神经网络要简单. 优化目标:

  6. Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 1

    转自: http://www.confluent.io/blog/stream-data-platform-1/ These days you hear a lot about "strea ...

  7. The Practical Guide to Empathy Maps: 10-Minute User Personas

    That’s where the empathy map comes in. When created correctly, empathy maps serve as the perfect lea ...

  8. Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 2

    转自: http://confluent.io/blog/stream-data-platform-2          http://www.infoq.com/cn/news/2015/03/ap ...

  9. Parsing techniques: a practical guide下载

    轮子哥隆重推荐的书,一行代码.一句公式都没有,但是却什么都讲明白了的:<Parsing Techniques>.第一版官网免费下载,第二版多出来的东西你们用不上不用看了.全书只讲parsi ...

随机推荐

  1. ASP.NET MVC 4.0 学习2-留言板實現

    新增專案實現留言板功能,瞭解MVC的運行機制 1,新增專案   2,添加數據庫文件message.mdf   Ctrl+W,L 打開資料庫連接,添加存放留言的Atricle表 添加字段,後點擊&quo ...

  2. MVC4商城项目三:分部视图在导航条上的应用

    写了几天发觉大部分时间用在JS上了,本来想写个musicstore,却加了框架,然后又想用后台,然后又想用上bootstrapt,然后又想弄权限设计,然后又想………… 看来是想多了~ 好吧,最近把后台 ...

  3. innobackupex 使用说明

    1.创建备份相关用户 '; grant reload,lock tables,replication client,process,super on *.* to 'backuper'@'127.0. ...

  4. c#一个分页控件的例子

    一.首先下载一个dll,地址:http://pan.baidu.com/share/link?shareid=1628211605&uk=1342867987 二.添加到项目中 三.添加引用 ...

  5. 【转】Objective-C 与 Runtime:为什么是这样?

    原文地址: http://t.cn/RyyNIXd?u=2483713130&m=3884400301576073&cu=2483713130 笔者非常高兴能为Objective-C写 ...

  6. Effective Java设定游戏 - 就是爱Java

    首先,我们先设定游戏,一个网页游戏的基本场景,主角拥有各种能力,但一开始数值都只有系统初始,随着故事的发展,会接触到各种不同的场景,获得提升角色的道具与装备,来参与更高难度的任务. 阅读全文>& ...

  7. iframe父子页面互调方法和属性

    1.iframe子页面调用 父页面js函数 子页面调用父页面函数只需要写上window.praent就可以了.比如调用a()函数,就写成: window.parent.a(); 子页面取父页面中的标签 ...

  8. 在C++中打印出变量的方法

    在C++中只能显示出字符串,而如果要想打印出其他类型的变量,则只能将其先转换为字符串类型. 例如:想打印出int型变量value的值 int  value; 则需: char str[1];//定义一 ...

  9. 实现action的三种方法

    1.一个普通的类 public class testAction1 { public String execute(){ return "success"; } } 2.实现Act ...

  10. 认识Junit

    JUnit是一个Java语言的单元测试框架.它由Kent Beck和Erich Gamma建立,逐渐成为源于Kent Beck的sUnit的xUnit家族中最为成功的一个. JUnit有它自己的JUn ...