leetcode之 median of two sorted arrays
这是我做的第二个leetcode题目,一开始以为和第一个一样很简单,但是做的过程中才发现这个题目非常难,给人一种“刚上战场就踩上地雷挂掉了”的感觉。后来搜了一下leetcode的难度分布表(leetcode难度及面试频率)才发现,该问题是难度为5的问题,真是小看了它!网上搜了很多答案,但是鲜见简明正确的解答,唯有一种寻找第k小值的方法非常好,在此整理一下。
首先对leetcode的编译运行吐槽一下:貌似没有超时判断,而且small和large的数据集相差很小。此题一开始我采用最笨的方法去实现,利用排序将两个数组合并成一个数组,然后返回中位数:
class Solution {
public:
double findMedianSortedArrays(int A[], int m, int B[], int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int *a=new int[m+n];
memcpy(a,A,sizeof(int)*m);
memcpy(a+m,B,sizeof(int)*n);
sort(a,a+n+m);
double median=(double) ((n+m)%2? a[(n+m)>>1]:(a[(n+m-1)>>1]+a[(n+m)>>1])/2.0);
delete a;
return median;
}
};
该方法居然也通过测试,但是其复杂度最坏情况为O(nlogn),这说明leetcode只对算法的正确性有要求,时间要求其实不严格。
另一种方法即是利用类似merge的操作找到中位数,利用两个分别指向A和B数组头的指针去遍历数组,然后统计元素个数,直到找到中位数,此时算法复杂度为O(n)。之后还尝试了根据算法导论中的习题(9.3-8)扩展的方法,但是该方法会存在无穷多的边界细节问题,而且扩展也不见得正确,这个可从各网页的评论看出,非常不建议大家走这条路。
最后从medianof two sorted arrays中看到了一种非常好的方法。原文用英文进行解释,在此我们将其翻译成汉语。该方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。
首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。
证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。
当A[k/2-1]>B[k/2-1]时存在类似的结论。
当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。
通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:
- 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
- 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
- 如果A[k/2-1]=B[k/2-1],返回其中一个;
最终实现的代码为:
double findKth(int a[], int m, int b[], int n, int k)
{
//always assume that m is equal or smaller than n
if (m > n)
return findKth(b, n, a, m, k);
if (m == 0)
return b[k - 1];
if (k == 1)
return min(a[0], b[0]);
//divide k into two parts
int pa = min(k / 2, m), pb = k - pa;
if (a[pa - 1] < b[pb - 1])
return findKth(a + pa, m - pa, b, n, k - pa);
else if (a[pa - 1] > b[pb - 1])
return findKth(a, m, b + pb, n - pb, k - pb);
else
return a[pa - 1];
} class Solution
{
public:
double findMedianSortedArrays(int A[], int m, int B[], int n)
{
int total = m + n;
if (total & 0x1)
return findKth(A, m, B, n, total / 2 + 1);
else
return (findKth(A, m, B, n, total / 2)
+ findKth(A, m, B, n, total / 2 + 1)) / 2;
}
};
我们可以看出,代码非常简洁,而且效率也很高。在最好情况下,每次都有k一半的元素被删除,所以算法复杂度为logk,由于求中位数时k为(m+n)/2,所以算法复杂度为log(m+n)。
leetcode之 median of two sorted arrays的更多相关文章
- 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays
一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...
- LeetCode(3) || Median of Two Sorted Arrays
LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...
- LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)
题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...
- Leetcode 4. Median of Two Sorted Arrays(二分)
4. Median of Two Sorted Arrays 题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/ Descr ...
- LeetCode 4. Median of Two Sorted Arrays & 归并排序
Median of Two Sorted Arrays 搜索时间复杂度的时候,看到归并排序比较适合这个题目.中位数直接取即可,所以重点是排序. 再来看看治阶段,我们需要将两个已经有序的子序列合并成一个 ...
- 第三周 Leetcode 4. Median of Two Sorted Arrays (HARD)
4. Median of Two Sorted Arrays 给定两个有序的整数序列.求中位数,要求复杂度为对数级别. 通常的思路,我们二分搜索中位数,对某个序列里的某个数 我们可以在对数时间内通过二 ...
- Leetcode 4. Median of Two Sorted Arrays(中位数+二分答案+递归)
4. Median of Two Sorted Arrays Hard There are two sorted arrays nums1 and nums2 of size m and n resp ...
- LeetCode 004 Median of Two Sorted Arrays
题目描述:Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. F ...
- leetcode 4. Median of Two Sorted Arrays
https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 and num ...
随机推荐
- redhat 6.3 64位安装中文输入法全过程记录
首先,修改/etc/profile文件,在末尾增加两行: export LC_ALL="zh_CN.UTF-8" export LANG="zh_CN.UTF-8&quo ...
- 解决GitHub未配置SSH key提示错误信息
git push -u origin master Permission denied (publickey). fatal: Could not read from remote repositor ...
- Bag of Words(BOW)模型
原文来自:http://www.yuanyong.org/blog/cv/bow-mode 重复造轮子并不是完全没有意义的. 这几天忙里偷闲看了一些关于BOW模型的知识,虽然自己做图像检索到目前为止并 ...
- git 之别名配置
在git操作中有很多命令我们自己可以起别名,以提高操作效率. 1. 配置方式 1)项目级别的配置,仅对当前项目生效(将写入到.git/config文件中) $ git config --glob ...
- ReactNative常见报错
1.导出模块错误 遇到这样的错误,首先检查代码有闭合一致,如果没有错误的话,则去检查是否是导出模块的错误. 如: export default moduleName; 改为: module.expor ...
- 浅析C# 中object sender与EventArgs e (转)
一.了解C#中的预定义事件处理机制 在写代码前我们先来熟悉.net框架中和事件有关的类和委托,了解C#中预定义事件的处理. EventArgs是包含事件数据的类的基类,用于传递事件的细节. Ev ...
- 使用工具来提升Android开发效率
正所谓工欲善其事,必先利其器.学习并应用优秀的轮子,能够让我们跑的更快,走的更远.这里所指的工具是广义的,泛指能帮助我们开发的东西,或者能提高我们效率的东西,包含:开发工具.监測工具.第三方代码库等. ...
- js函数设计原则
一般认为函数指具有返回值的子程序,过程指没有返回值的子程序.C++中把所有子程序成为函数,其实那些返回值为void的 函数在语义上也是过程.函数与过程的区别更多是语义上的区别,而不是语法的区别. 语言 ...
- 最新的手机/移动设备jQuery插件
随着互联网的流行,移动网站开始急速增加,在2014年手机网站将会出现很多,所以手机网站是必须要学会制作的.手机网站不像桌面平台一样制作,否则会影响显示效果,目前大部分手机网站使用响应式设计技术,而且也 ...
- VS2015 企业版不支持 JavaScript 语法高亮、智能提醒
2015年7月,微软终于放出了 Visual Studio 2015 正式版,博主安装了 Visual Studio 2015 企业版之后,居然不支持 JavaScript 的语法高亮.智能提醒功能, ...