\[\Large\displaystyle \int_0^{\pi/2}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x\]


\(\Large\mathbf{Solution:}\)
Let \(J\) donates the integral and it is easy to see that
\[\begin{align*}
J&=\int_0^{\pi/4}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x+
\int_{\pi/4}^{\pi/2}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x\cr
&=\int_0^{\pi/4}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x+
\int_{0}^{\pi/4}\ln^2(\cos x)\ln(\sin x)\cot x \,{\rm d}x\cr
\end{align*}\]
Now, to calculate \(J\) we make the substitution \(t\leftarrow\sin^2x\):
\[J=\frac{1}{16}\int_0^1\frac{\ln(1-u)}{1-u}\ln^2(u)\,{\rm d}u\]
But
\[\frac{\ln(1-u)}{1-u}=-\left(\sum_{n=0}^\infty u^n\right)\left(\sum_{n=1}^\infty \frac{u^n}{n}\right)
=-\sum_{n=1}^\infty H_nu^n\]
where \(H_n=\displaystyle\sum_{k=1}^n \frac{1}{k}\).Hence
\[J=-\frac{1}{16}\sum_{n=1}^\infty H_n\int_0^1u^n\ln^2(u){\rm d}u
=-\frac{1}{8}\sum_{n=1}^\infty\frac{ H_n}{(n+1)^3}\]
The sum \(\displaystyle\sum_{n=1}^\infty\frac{H_n}{n^3}\) is known, it can be evaluated as follows, first we have
\[H_n=\sum_{k=1}^\infty\left(\frac{1}{k}-\frac{1}{k+n}\right)=
\sum_{k=1}^\infty \frac{n}{k(k+n)}\]
Thus
\[\sum_{n=1}^\infty\frac{H_n}{n^3}=\sum_{k,n\geq1}\frac{1}{n^2k(n+k)}
=\sum_{k,n\geq1}\frac{1}{k^2n(n+k)}\]
Taking the half sum we find
\[\sum_{n=1}^\infty\frac{H_n}{n^3}=\frac{1}{2}\sum_{k,n\geq1}\frac{1}{kn(k+n)}\left(\frac{1}{k}+\frac{1}{n}\right)=
\frac{1}{2}\sum_{k,n\geq1}\frac{1}{k^2n^2}=\frac{1}{2}\zeta^2(2)\]
then we obtain
\[\Large\boxed{\displaystyle \begin{align*}
\int_0^{\pi/2}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x&=\frac{1}{8}\zeta(4)-\frac{1}{16}\zeta^2(2)\\
&=\color{blue}{-\frac{\pi^4}{2880}}
\end{align*}}\]

Logarithmic-Trigonometric积分系列(二)的更多相关文章

  1. 前端构建大法 Gulp 系列 (二):为什么选择gulp

    系列目录 前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gul ...

  2. WPF入门教程系列二十三——DataGrid示例(三)

    DataGrid的选择模式 默认情况下,DataGrid 的选择模式为“全行选择”,并且可以同时选择多行(如下图所示),我们可以通过SelectionMode 和SelectionUnit 属性来修改 ...

  3. Web 开发人员和设计师必读文章推荐【系列二十九】

    <Web 前端开发精华文章推荐>2014年第8期(总第29期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  4. Web 前端开发人员和设计师必读文章推荐【系列二十八】

    <Web 前端开发精华文章推荐>2014年第7期(总第28期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  5. Web 开发精华文章集锦(jQuery、HTML5、CSS3)【系列二十七】

    <Web 前端开发精华文章推荐>2014年第6期(总第27期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  6. Web 前端开发人员和设计师必读精华文章【系列二十六】

    <Web 前端开发精华文章推荐>2014年第5期(总第26期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  7. Web 前端开发精华文章推荐(HTML5、CSS3、jQuery)【系列二十三】

    <Web 前端开发精华文章推荐>2014年第2期(总第23期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  8. Web 前端开发精华文章推荐(HTML5、CSS3、jQuery)【系列二十二】

    <Web 前端开发精华文章推荐>2014年第一期(总第二十二期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML ...

  9. 【圣诞特献】Web 前端开发精华文章推荐【系列二十一】

    <Web 前端开发精华文章推荐>2013年第九期(总第二十一期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HTML5 和  ...

  10. Web 前端开发精华文章集锦(jQuery、HTML5、CSS3)【系列二十】

    <Web 前端开发精华文章推荐>2013年第八期(总第二十期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HTML5 和 C ...

随机推荐

  1. .netcore 3.1高性能微服务架构:加入swagger接口文档

    本文为原创文章:首发:http://www.zyiz.net/tech/detail-108663.html swagger是什么? Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视 ...

  2. javascript闭包的理解和实例

    所谓闭包,值得是词法表示包括不必要计算的变量的函数,也就是说,该函数可以使用函数外定义的变量. 顺便提示一下: 词法作用域:变量的作用域是在定义时决定而不是执行时决定,也就是说词法作用域取决于源码,通 ...

  3. poj1321棋盘问题(dfs+摆放问题)

    在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C. ...

  4. JUC-LOCK接口

    Synchronized 1.多线程编程模版上 (1)线程 操作 资源类 (2)高内聚低耦合 2.实现步骤 (1)创建资源类 (2)资源类里创建同步方法,同步代码块 3.例子:卖票 LOCK 接口 锁 ...

  5. logging日志模块_python

    一.logging模块 1.功能 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设 ...

  6. Laravel中如何做数据库迁移

    总的来说,做一次独立数据库迁移只需要三步,分别是创建迁移文件.修改迁移文件.运行迁移 1.创建数据库迁移文件php artisan make:migration create_articles_tab ...

  7. 微信小程序前台的用户数据入库(后台Laravel)

    首先 我们可以看到微信小程序官方 文档 wx.login   api-login.jpg 通过此图 我们知道 前台要传 一个 code给后台,后台拿到code 并结合appid和appsecret请求 ...

  8. MANIFEST.MF详解及配置的注意事项

    一.详解 打开Java的JAR文件我们经常可以看到文件中包含着一个META-INF目录, 这个目录下会有一些文件,其中必有一个MANIFEST.MF,这个文件描述了该Jar文件的很多信息,下面将详细介 ...

  9. TCP/IP详解,卷1:协议--第6章 ICMP:Internet控制报文协议

    引言 I C M P经常被认为是 I P层的一个组成部分.它传递差错报文以及其他需要注意的信息. I C M P报文通常被I P层或更高层协议( T C P或U D P)使用.一些I C M P报文把 ...

  10. 线性混合+ROI

    相关代码: #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namesp ...