Coxeter积分计算
\begin{align*}
&\int_0^{\frac{\pi}{3}}{\arccos \left( \frac{1-\cos x}{\text{2}\cos x} \right) dx}=\int_0^{\frac{\pi}{3}}{\text{2}\arctan \sqrt{\frac{\text{3}\cos x-1}{\cos x+1}}dx}
\\
&=\int_0^{\pi}{\text{4}\arctan \sqrt{\frac{\text{3}\cos 2y-1}{\cos 2y+1}}dy}\quad \left( x=2y \right)
\\
&=\int_0^{\frac{\pi}{6}}{\text{4}\arctan \left( \frac{\sqrt{1-\text{3}\sin ^2y}}{\cos y} \right) dy}=\int_0^{\frac{\pi}{6}}{4\left[ \frac{\pi}{2}-\arctan \left( \frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}} \right) \right] dy}
\\
&=\frac{\pi ^2}{3}-4\int_0^{\frac{\pi}{6}}{\arctan \left( \frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}} \right) dy}
\\
&=\frac{\pi ^2}{3}-4\int_0^{\frac{\pi}{6}}{\int_0^1{\frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}}\frac{dt}{1-\left( \frac{1-\sin ^2y}{1-\text{3}\sin ^2y} \right) t^2}dy}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{6}}{\int_0^1{\frac{\text{4}\cos y\sqrt{1-\text{3}\sin ^2y}dt}{\left( 1-\text{3}\sin ^2y \right) +\left( 1-\sin ^2y \right) t^2}dy}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{3}}{\int_0^1{\frac{4\sqrt{3}\cos ^2wdt}{\text{3}\cos ^2w+\left( 2+\cos ^2w \right) t^2}dw}}\quad \left( \sin w=\sqrt{3}\sin y \right)
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{3}}{\int_0^1{\frac{4\sqrt{3}\sec ^2wdt}{\left[ \left( 3+3t^2 \right) +2t^2\tan ^2w \right] \left( 1+\tan ^2w \right)}dw}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\sqrt{3}}{\int_0^1{\frac{4\sqrt{3}dtds}{\left[ \left( 3+3t^2 \right) +2t^2s^2 \right] \left( 1+s^2 \right)}}}\ \ \left( s=\tan w \right)
\\
&=\frac{\pi ^2}{3}-\int_0^{\sqrt{3}}{\int_0^1{\frac{4\sqrt{3}}{t^2+3}\left( \frac{1}{1+s^2}-\frac{2t^2}{\left( 3t^2+3 \right) +2t^2s^2} \right) dtds}}
\\
&=\frac{\pi ^2}{3}-\int_0^1{\frac{4\sqrt{3}}{t^2+3}\left[ \frac{\pi}{3}-\sqrt{\frac{2t^2}{3t^2+3}}\arctan \left( \sqrt{\frac{2t^2}{t^2+1}} \right) \right] dt}
\\
&=\frac{\pi ^2}{9}+4\sqrt{2}\int_0^1{\frac{t}{\left( t^2+3 \right) \sqrt{t^2+1}}\arctan \left( \frac{t\sqrt{2}}{\sqrt{t^2+1}} \right) dt}
\\
&=\frac{\pi ^2}{9}+\left[ \text{4}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) \tan ^{-1}\left( \frac{t\sqrt{2}}{\sqrt{t^2+1}} \right) \right] _{0}^{1}-4\sqrt{2}\int_0^1{\frac{1}{\left( 3t^2+1 \right) \sqrt{t^2+1}}}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) dt
\\
&=\frac{13\pi ^2}{36}-4\sqrt{2}\int_0^1{\frac{1}{\left( 3t^2+1 \right) \sqrt{t^2+1}}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) dt}
\\
&=\frac{5\pi ^2}{36}-\int_0^1{\frac{4}{3t^2+1}\int_0^1{\frac{1}{1+\left( \frac{t^2+1}{2} \right) u^2}}dudt}
\\
&=\frac{13\pi ^2}{36}-4\int_0^1{\int_0^1{\frac{1}{u^2+3}\left[ \frac{1}{t^2+\frac{1}{3}}-\frac{1}{t^2+\frac{u^2+2}{u^2}} \right] dudt}}
\\
&=\frac{5\pi ^2}{36}+4\int_0^1{\frac{u}{\left( u^2+3 \right) \sqrt{u^2+2}}\tan ^{-1}\left( \frac{u}{\sqrt{u^2+2}} \right) du}
\\
&=\frac{5\pi ^2}{36}+4\left[ \tan ^{-1}\sqrt{u^2+2}\tan ^{-1}\left( \frac{u}{\sqrt{u^2+2}} \right) \right] _{0}^{1}-4\int_0^1{\frac{\tan ^{-1}\sqrt{u^2+2}}{\left( u^2+1 \right) \sqrt{u^2+2}}du}
\\
&=\frac{13\pi ^2}{36}-4\int_0^1{\frac{\tan ^{-1}\sqrt{u^2+2}}{\left( u^2+1 \right) \sqrt{u^2+2}}du}=\frac{13\pi ^2}{36}-\frac{5\pi ^2}{24}=\frac{11\pi ^2}{72}.
\end{align*}
Coxeter积分计算的更多相关文章
- MCMC 、抽样算法与软件实现
一.MCMC 简介 1. Monte Carlo 蒙特卡洛 蒙特卡洛方法(Monte Carlo)是一种通过特定分布下的随机数(或伪随机数)进行模拟的方法.典型的例子有蒲丰投针.定积分计算等等,其基础 ...
- OPEN CASCADE Multiple Variable Function
OPEN CASCADE Multiple Variable Function eryar@163.com Abstract. Multiple variable function with grad ...
- OpenCASCADE Curve Length Calculation
OpenCASCADE Curve Length Calculation eryar@163.com Abstract. The natural parametric equations of a c ...
- 关于opencv中人脸识别主函数的部分注释详解。
近段时间在搞opencv的视频人脸识别,无奈自带的分类器的准确度,实在是不怎么样,但又能怎样呢?自己又研究不清楚各大类检测算法. 正所谓,功能是由函数完成的,于是自己便看cvHaarDetectObj ...
- 第1章 重构,第一个案例(3):运用多态取代switch
3. 运用多态取代与价格相关的条件逻辑 3.1 switch和“常客积分”代码的再次搬迁 (1)switch:最好不要在另一个对象的属性上运用switch语句 switch(getMovie().ge ...
- 第1章 重构,第一个案例(2):分解并重组statement函数
2. 分解并重组statement (1)提炼switch语句到独立函数(amountFor)和注意事项. ①先找出函数内的局部变量和参数:each和thisAmount,前者在switch语句内未被 ...
- 从Elo Rating System谈到层次分析法
1. Elo Rating System Elo Rating System对于很多人来说比较陌生,根据wikipedia上的解释:Elo评分系统是一种用于计算对抗比赛(例如象棋对弈)中对手双方技能水 ...
- [转] - MC、MC、MCMC简述
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇 ...
- nVIDIA SDK White Paper ----Vertex Texture Fetch Water
http://blog.csdn.net/soilwork/article/details/713842 nVIDIA SDK White Paper ----Vertex Texture Fetch ...
随机推荐
- Jmeter 连接Redis获取数据集
公司开展了新的业务活动,需要配合其他部门做压测,由于脚本中的手机号和用户的uid需要参数化而且每次均不能重复,最初的考虑使用csv的方式来获取数据,比较头疼的问题是集群节点需要维护测试数据,所以我将所 ...
- C#设计模式学习笔记:(23)解释器模式
本笔记摘抄自:https://www.cnblogs.com/PatrickLiu/p/8242238.html,记录一下学习过程以备后续查用. 一.引言 今天我们要讲行为型设计模式的第十一个模式-- ...
- 05.JS函数
前言: 学习一门编程语言的基本步骤(01)了解背景知识(02)搭建开发环境(03)语法规范(04)常量和变量(05)数据类型(06)数据类型转换(07)运算符(08)逻辑结构(09)函数9.函数——f ...
- 10.Android-SharedPreferences使用
1.SharedPreferences介绍 SharedPreferences,它是一个轻量级的配置文件类,用于保存软件配置参数. 采用xml文件形式存储在/data/data/包名/shared_p ...
- Android实战项目——家庭记账本(五)
今天博客写的有点晚(好像算是昨天的了),有一点小bug刚刚改完.今天完成的任务有: 1.统计页的布局和功能 2.主页碎片的图表功能 实现效果如下: 其中,统计 ...
- (办公)记事本_Linux查找命令
参考谷粒学院的linux视频教程:http://www.gulixueyuan.com/course/300/task/7091/show 搜索命令 .whereis命令: 1.1.Linux whe ...
- 【46】谷歌 Inception 网络简介Inception(2)
Inception 网络(Inception network) 在上节笔记中,你已经见到了所有的Inception网络基础模块.在本节笔记中,我们将学习如何将这些模块组合起来,构筑你自己的Incept ...
- JavaDay11
Java learning_Day11 本人学习视频用的是马士兵的,也在这里献上 <链接:https://pan.baidu.com/s/1qKNGJNh0GgvlJnitTJGqgA> ...
- numpy reshape -1
来源:https://www.zhihu.com/question/52684594 z = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] ...
- 3.3 Zabbix容器安装
课程资料:https://github.com/findsec-cn/zabbix 1. yum install docker-latest :安装最新的docker ,选择 y ,等待自 ...