Faster Rcnn随笔
步骤:
1.build_head()函数: 构建CNN基层网络
图像被缩放16倍
2.build_rpn()函数: 在feature map上生成box的坐标和判断是否有物体
generate_anchors:生成9个坐标框(思想:先定义一个基准框(0,0,16,16),因为经过多层卷积池化之后,
feature map上一点的感受野对应到原始图像就会是一个区域,这里设置的是16,
也就是feature map上一点对应到原图的大小为16x16的区域根据基准框生成一个中心坐标长宽为(
(16,16,7.5,7.5)的框,基本面积16*16 = 256,根据ratios(0.5,1,2),得到3个面积的框[512,256,128]
然后开根号得到3种长[23,16,11]*[8,16,32],再乘以ratios得到宽[12,16,22]*[8,16,32],9组长宽计算出来9个anchor根据公式
x_ctr - 0.5 * (ws - 1),
y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1),
y_ctr + 0.5 * (hs - 1)
计算anchors(中心(7.5,7.5))
[[-3.5 2 18.5 13][0 0 15 15][2.5 -3 12.5 18]]
,这3个面积分别生成3种长宽,在给定3种scales(8,16,32),总共生成以下9种
array([[ -83., -39., 100., 56.],
[-175., -87., 192., 104.],
[-359., -183., 376., 200.],
[ -55., -55., 72., 72.],
[-119., -119., 136., 136.],
[-247., -247., 264., 264.],
[ -35., -79., 52., 96.],
[ -79., -167., 96., 184.],
[-167., -343., 184., 360.]])
其中坐标是相对于中心的偏移。
generate_anchors_pre:根据特征图的坐标对应到原图上面去,也就是原图中每隔16个像素会有9个anchors
anchor_shape =[WxHx9, 4]
3.build_proposas()函数: 对box进行判断,挑选合适的box,其中进行iou和nms操作,这里没有训练参数的生成。
① 去除掉超过1000*600这原图的边界的anchor box
② 如果anchor box与ground truth的IoU值最大,标记为正样本,label=1
③ 如果anchor box与ground truth的IoU>0.7,标记为正样本,label=1
④ 如果anchor box与ground truth的IoU<0.3,标记为负样本,label=0
剩下的既不是正样本也不是负样本,不用于最终训练,label=-1
除了对anchor box进行标记外,另一件事情就是计算anchor box与ground truth之间的偏移量
令:ground truth:标定的框也对应一个中心点位置坐标x*,y*和宽高w*,h*
anchor box: 中心点位置坐标x_a,y_a和宽高w_a,h_a
所以,偏移量:
△x=(x*-x_a)/w_a △y=(y*-y_a)/h_a
△w=log(w*/w_a) △h=log(h*/h_a)
通过ground truth box与预测的anchor box之间的差异来进行学习,从而是RPN网络中的权重能够学习到预测box的能力
loss理解:
SmoothL1Loss:
(1)clsscore层:用于分类,输出离散型概率分布:
p由k+1类的全连接层利用softmax计算得出
loss_cls层评估分类损失函数。由真实分类u对应的概率决定:
(2) bbox_prdict层:用于调整候选区域位置,输出bounding box回归的位移,输出4*K维数组t,表示分别属于k类时,应该平移缩放的参数
loss_bbox评估检测框定位的损失函数。比较真实分类对应的预测平移缩放参数和真实平移缩放参数的差别
其中,smooth L1损失函数为:
smooth L1损失函数曲线如下图9所示,作者这样设置的目的是想让loss对于离群点更加鲁棒,相比于L2损失函数,其对离群点、异常值(outlier)不敏感,可控制梯度的量级使训练时不容易跑飞
smoothL1损失函数曲线
最后总损失为(两者加权和,如果分类为背景则不考虑定位损失):
规定u=0为背景类(也就是负标签),那么艾弗森括号指数函数[u≥1]表示背景候选区域即负样本不参与回归损失,不需要对候选区域进行回归操作。λ控制分类损失和回归损失的平衡。Fast R-CNN论文中,所有实验λ=1。
Faster R-CNN损失函数
遵循multi-task loss定义,最小化目标函数,FasterR-CNN中对一个图像的函数定义为:
其中:
#4.build_predictions():这里进行最后的类别分类和box框回归之前会有一个rois网络层,该网络会把所有的feature map进行尺寸resize到固定的尺寸,之后进行拉伸。这里有两路输出,一个是box的坐标,另一个是类别的分数。
Faster Rcnn随笔的更多相关文章
- faster r-cnn 在CPU配置下训练自己的数据
因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net ...
- r-cnn学习系列(三):从r-cnn到faster r-cnn
把r-cnn系列总结下,让整个流程更清晰. 整个系列是从r-cnn至spp-net到fast r-cnn再到faster r-cnn. RCNN 输入图像,使用selective search来构造 ...
- 论文阅读之:Is Faster R-CNN Doing Well for Pedestrian Detection?
Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV 2016 Liliang Zhang & Kaiming He 原文链接 ...
- 如何才能将Faster R-CNN训练起来?
如何才能将Faster R-CNN训练起来? 首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installa ...
- faster rcnn test demo ---repaired for video input and save the image, label, score et al. into .mat format
faster rcnn test demo ---repaired for video input and save the image, label, score et al. into .mat ...
- 一个门外汉的理解 ~ Faster R-CNN
首先放R-CNN的原理图 显然R-CNN的整过过程大致上划分为四步: 1.输入图片 2.生成候选窗口 3.对局部窗口进行特征提取(CNN) 4.分类(Classify regions) 而R-CNN的 ...
- object detection技术演进:RCNN、Fast RCNN、Faster RCNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...
- [原创]Faster R-CNN论文翻译
Faster R-CNN论文翻译 Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什 ...
- 新人如何运行Faster RCNN的tensorflow代码
0.目的 刚刚学习faster rcnn目标检测算法,在尝试跑通github上面Xinlei Chen的tensorflow版本的faster rcnn代码时候遇到很多问题(我真是太菜),代码地址如下 ...
随机推荐
- Python--day72--ajax完整版
来源: AJAX准备知识:JSON 什么是 JSON ? JSON 指的是 JavaScript 对象表示法(JavaScript Object Notation) JSON 是轻量级的文本数据交换格 ...
- H3C 帧中继数据链路标识
- 如何查看linux中的ssh端口开启状态
netstat -anp |grep 22 netstat -anp |grep sshlsof -i :22
- tensorflow学习笔记(四十五):sess.run(tf.global_variables_initializer()) 做了什么?
当我们训练自己的神经网络的时候,无一例外的就是都会加上一句 sess.run(tf.global_variables_initializer()) ,这行代码的官方解释是 初始化模型的参数.那么,它到 ...
- [转]ASP.NET WebApi OWIN 实现 OAuth 2.0
OAuth(开放授权)是一个开放标准,允许用户让第三方应用访问该用户在某一网站上存储的私密的资源(如照片,视频,联系人列表),而无需将用户名和密码提供给第三方应用. OAuth 允许用户提供一个令牌, ...
- Tomcat最佳线程数
什么是最佳线程数? 为满足更多用户访问需求,可以调整Tomcat线程数,但是不能太大,否则导致线程切换开销,随着用户递增(线程数也随之调整),系统QPS逐渐增加,当用户量达到某个值,QPS并不会增加, ...
- 51nod 矩阵快速幂(模板题)
1113 矩阵快速幂 基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给出一个N * N的矩阵,其中的元素均为正整数.求这个矩阵的M次方.由于M次方的计算结果太大 ...
- Linux 内核kobject非 缺省属性
在许多情况中, kobject 类型的 default_attrs 成员描述所有的 kobject 会拥有的属性. 但是那不是一个设计中的限制; 属性随意可以添加到和删除自 kojects. 如果你想 ...
- CF Round #580(div2)题解报告
CF Round #580(div2)题解报告 T1 T2 水题,不管 T3 构造题,证明大约感性理解一下 我们想既然存在解 \(|a[n + i] - a[i]| = 1\) 这是必须要满足的 既然 ...
- 【21.00%】【vijos P1018】智破连环阵
描述 B国在耗资百亿元之后终于研究出了新式武器--连环阵(Zenith Protected Linked Hybrid Zone).传说中,连环阵是一种永不停滞的自发性智能武器.但经过A国间谍的侦察发 ...