二分图hall定理应用+二分+双指针——cf981F(好题)
/*
二分答案,判mid是否合法
如何判断:如果是在直线上,那么遍历匹配即可
现在在环上,即既可以向前匹配也可以向后匹配,那么将环拆开,扩展成三倍 显然a和b的匹配边是不可能交叉的,因为交叉必定没有不交叉优
hall定理:二分图两个点集A,B,连续一段A的点对应连续一段B的点的 充要条件是 这些点对的匹配边之间不交叉
重要推论:二部图G中的两部分顶点组成的集合分别为X,Y, 若|X|=|Y|,
且G中有一组无公共端点的边,一端恰好组成X中的点,一端恰好组成Y中的点,则称二部图G中存在完美匹配 有了这个定理,就可以用在判定上:a的点集对应b点集的连续一段,即b的n个点也是连续的,因为之前已经确定匹配边不交叉
先求出a[1]的范围[a[1]-mid,a[1]+mid]对应的能控制的b数组的范围[l1,r1]
那么a[2]的控制范围要和[l1+1,r1+1]交叉得到[l2,r2]
那么a[3]的控制范围要和[l2+1,r2+1]交叉得到[l3,r3]
...依次类推
可以这个区间长度只会减小不会变大
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 200005
long long n,L,a[maxn],b[maxn<<],c[maxn],m; int judge(int mid){//a[i]的控制区间是[a[i]-mid,a[i]+mid]
int l=,r=m;
for(int i=;i<=n;i++){
while(a[i]-mid>b[l])
++l;
while(a[i]+mid<b[r])
--r;
if(l>r)return ;
++l,++r;
}
return ;
} int main(){
cin>>n>>L;
for(int i=;i<=n;i++)cin>>a[i];
for(int i=;i<=n;i++)cin>>c[i];
sort(c+,c++n);sort(a+,a++n); for(int i=;i<=n;i++)b[i]=c[i]-L;
for(int i=;i<=n;i++)b[i+n]=c[i];
for(int i=;i<=n;i++)b[i+*n]=c[i]+L;
m=*n; int l=,r=L,ans,mid;
while(l<=r){
mid=l+r>>;
if(judge(mid))
ans=mid,r=mid-;
else l=mid+;
}
cout<<ans<<'\n';
}
二分图hall定理应用+二分+双指针——cf981F(好题)的更多相关文章
- bzoj3693: 圆桌会议 二分图 hall定理
目录 题目链接 题解 代码 题目链接 bzoj3693: 圆桌会议 题解 对与每个人构建二分,问题化为时候有一个匹配取了所有的人 Hall定理--对于任意的二分图G,G的两个部分为X={x1,x2,- ...
- 【CF981F】Round Marriage(二分答案,二分图匹配,Hall定理)
[CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果 ...
- 【CF981F】Round Marriage(二分答案,hall定理)
传送门 题意: 给出一个长度为\(L\)的环,标号从\(0\)到\(L-1\). 之后给出\(n\)个新郎,\(n\)个新娘离起点的距离. 现在新郎.新娘要一一配对,但显然每一对新人的产生都会走一定的 ...
- CF981F 二分+Hall定理
对于一个二分的答案 假设存在一个点集使得不满足Hall定理 题中给定的信息说明 左边每个点对应的右边点是一个区间 如果当前点集对应的右边区间是若干个不相交的区间组成的话说明我们还可以找到一个更小的点集 ...
- Hall定理 二分图完美匹配
充分性证明就先咕了,因为楼主太弱了,有一部分没看懂 霍尔定理内容 二分图G中的两部分顶点组成的集合分别为X, Y(假设有\(\lvert X \rvert \leq \lvert Y \rvert\) ...
- Card Collector AtCoder - 5168(二分图匹配的HALL定理)
题意: 给定一个H行W列的矩阵,在矩阵的格点上放带权值的卡片(一个点上能放多张). 现在从每行每列各拿走一张卡片(没有可以不拿),求可以拿到的最大权值. 卡片数N<=1e5,H,W<=1e ...
- ARC106E-Medals【hall定理,高维前缀和】
正题 题目链接:https://atcoder.jp/contests/arc106/tasks/arc106_e 题目大意 \(n\)个员工,第\(i\)个在\([1,A_i]\)工作,\([A_i ...
- Codeforces 338E - Optimize!(Hall 定理+线段树)
题面传送门 首先 \(b_i\) 的顺序肯定不会影响匹配,故我们可以直接将 \(b\) 数组从小到大排个序. 我们考虑分析一下什么样的长度为 \(m\) 的数组 \(a_1,a_2,\dots,a_m ...
- TCO 2015 1A Hard.Revmatching(Hall定理)
\(Description\) 给定一个\(n\)个点的二分图,每条边有边权.求一个边权最小的边集,使得删除该边集后不存在完备匹配. \(n\leq20\). \(Solution\) 设点集为\(S ...
随机推荐
- promise、async、await、settimeout异步原理与执行顺序
一道经典的前端笔试题,你能一眼写出他们的执行结果吗? async function async1() { console.log("async1 start"); await as ...
- 启动AutoCAD时自动加载.NET开发的DLL
程序组织,建立名为*.bundle的文件夹,创建Contents子文件夹,并将dll,ico等文件放进Contents中,在*.bundle中创建PackageContents.xml文件,内容如下: ...
-  导致页面顶部空白一行
模板文件生成html文件以后会在页面body开头处生成可见的控制符 导致页面头部出现一个空白行,导致这样的原因就是页面的编码格式是UTF-8 + BOM 解决方法,最简单的就是使用编辑器重新保存文件 ...
- C++一些不常见的库及函数
pbds库 平衡树:one , two #include <bits/extc++.h> using namespace std; using namespace __gnu_pbds; ...
- Python的从头再来
虽然各种视频,文档看了不少.但是都没有系统的总结.现在要把Python从最基础开始总结,回归.也当作自己的复习.
- Linux文件大小 指令&编程
在工作和日常的编程中时常需要确定文件的大小,一些基本的查看方式在此做一个总结. 一. linux shell环境下 df可以查看一级文件夹大小.使用比例.档案系统及其挂入点,但对文件却无能为力. ...
- Echart使用js进行封装成函数
Echart使用js进行封装成函数 主要是对 json 串的封装,使用 js 进行对 json 的解析.之间用的最多是循环取出数组中的值,如果拿去使用可直接修改 json 就好. 上一篇把二维的封装好 ...
- spark hive java.lang.NoSuchFieldError: HIVE_STATS_JDBC_TIMEOUT
java.lang.NoSuchFieldError: HIVE_STATS_JDBC_TIMEOUT 这个问题我感觉是hive给spark挖的一个大坑.spark版本是2.4.4,hive是3 这个 ...
- Apache Flink 整体介绍
前言 Flink 是一种流式计算框架,为什么我会接触到 Flink 呢?因为我目前在负责的是监控平台的告警部分,负责采集到的监控数据会直接往 kafka 里塞,然后告警这边需要从 kafka topi ...
- scala 列表List
列表: 列表是不可变,也就是说不能通过赋值改变列表的元素: 列表有递归结构,而数据是连续的 List 类型:List() 同样也是List(String) 列表是基于Nil (是空的)和::(列表从前 ...