「JSOI2013」旅行时的困惑

传送门

由于我们的图不仅是一个 \(\text{DAG}\) 而且在形态上还是一棵树,也就是说我们为了实现节点之间互相可达,就必须把每条边都覆盖一次,因为两个点之间的路径是唯一的。

那么题意就变成了:每次在图上选出一条路径,覆盖上面的边,求最小的路径数使得所有边都被覆盖至少一次。

看到这里我不禁联想起这道题

那么对于这道题我们就让源点 \(S\) 向所有点连上界为 \(+\infty\) ,下界为 \(0\) 的边,所有点向汇点 \(T\) 连边同理,然后原图中的边连成上界为 \(+\infty\) ,下界为 \(1\) 的边,然后跑一个有源汇上下界最小流即可。

由于这题数据范围还是相对有点大的,所以建议把能加的优化都加上。

#include <cstring>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline T min(T a, T b) { return a < b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
} const int _ = 2e5 + 10, __ = 1e6 + 10, INF = 2147483647; int tot = 1, head[_]; struct Edge { int v, w, nxt; } edge[__ << 1];
inline void Add_edge(int u, int v, int w) { edge[++tot] = (Edge) { v, w, head[u] }, head[u] = tot; }
inline void link(int u, int v, int w) { Add_edge(u, v, w), Add_edge(v, u, 0); } int n, s, t, S, T, d[_], dep[_], cur[_]; inline void Link(int u, int v, int l, int r) { link(u, v, r - l), d[u] -= l, d[v] += l; } inline int bfs() {
static int hd, tl, Q[_];
memset(dep + 1, 0, sizeof (int) * (n + 4));
hd = tl = 0, dep[Q[++tl] = S] = 1;
while (hd < tl) {
int u = Q[++hd];
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if (dep[v] == 0 && w)
dep[v] = dep[u] + 1, Q[++tl] = v;
}
}
return dep[T] > 0;
} inline int dfs(int u, int flow) {
if (u == T) return flow;
for (rg int& i = cur[u]; i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if (dep[v] == dep[u] + 1 && w) {
int res = dfs(v, min(flow, w));
if (res) { edge[i].w -= res, edge[i ^ 1].w += res; return res; }
}
}
return 0;
} inline int Dinic() {
int res = 0;
while (bfs()) {
for (rg int i = 1; i <= n + 4; ++i) cur[i] = head[i];
while (int d = dfs(S, INF)) res += d;
}
return res;
} int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), s = n + 1, t = n + 2, S = n + 3, T = n + 4;
for (rg int u, v, i = 1; i < n; ++i) read(u), ++u, read(v), ++v, Link(u, v, 1, INF);
for (rg int i = 1; i <= n; ++i) Link(s, i, 0, INF), Link(i, t, 0, INF);
for (rg int i = 1; i <= n; ++i) {
if (d[i] > 0) link(S, i, d[i]);
if (d[i] < 0) link(i, T, -d[i]);
}
Dinic();
link(t, s, INF);
Dinic();
printf("%d\n", edge[tot].w);
return 0;
}

「JSOI2013」旅行时的困惑的更多相关文章

  1. 「JSOI2013」贪心的导游

    「JSOI2013」贪心的导游 传送门 多次询问区间内%一个数的最大值 我们不妨设这个数为M_sea 值域比较小所以考虑分块维护. 我们观察到对于给定的一个 \(p\) ,函数 \(y = x \% ...

  2. 「JSOI2013」哈利波特和死亡圣器

    「JSOI2013」哈利波特和死亡圣器 传送门 首先二分,这没什么好说的. 然后就成了一个恒成立问题,就是说我们需要满足最坏情况下的需求. 那么显然在最坏情况下伏地魔是不会走回头路的 因为这显然是白给 ...

  3. 「JSOI2013」侦探jyy

    「JSOI2013」侦探jyy 传送门 个人感觉我写的复杂度不够优秀啊,但是好像没有别的办法了... 我们枚举每个点,考虑这个点能不能不发生. 首先我们从这个点开始,在反图上面 \(\text{BFS ...

  4. 「JSOI2013」游戏中的学问

    「JSOI2013」游戏中的学问 传送门 考虑 \(\text{DP}\) 设 \(dp_{i, j}\) 表示将前 \(i\) 个人分成 \(j\) 个集合,并且第 \(i\) 个人在第 \(j\) ...

  5. 「JSOI2010」旅行

    「JSOI2010」旅行 传送门 比较妙的一道 \(\text{DP}\) 题,思维瓶颈应该就是如何确定状态. 首先将边按边权排序. 如果我们用 \(01\) 串来表示 \(m\) 条边是否在路径上, ...

  6. 「SDOI2014」旅行(信息学奥赛一本通 1564)(洛谷 3313)

    题目描述 S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教.绝地教都是常见的信仰. 为了方便,我 ...

  7. bzoj 4464 : [Jsoi2013]旅行时的困惑

    网络流建图. 从S向每个点连边,从每个点向T连边. 每条树边反向连一条下界为1,上界inf的边. 跑最小流. 注意加当前弧优化. #include<cstdio> #include< ...

  8. bzoj 4464: [Jsoi2013]旅行时的困惑【贪心】

    据说正解是有上下界最小流,但是这种1e5的玩意问什么要跑网络流啊-- 贪心即可,注意一点是可以有多条路径经过一条边-- 以1为根,设d[u][0/1]为u到父亲的边是向下/向上,g记录这个点儿子中不能 ...

  9. BZOJ 4464 旅行时的困惑 最小流

    题面: Waldives 有 N 个小岛.目前的交通系统中包含 N-1 条快艇专线,每条快艇 专线连接两个岛.这 N-1条快艇专线恰好形成了一棵树. 由于特殊的原因,所有N-1条快艇专线都是单向的.这 ...

随机推荐

  1. css的div动态水平垂直居中

      div动态水平垂直居中,思路如下: (1)先定位.如果相对于距离最近的父元素,用absolute:如果相对于body,用fixed. (2)然后,top和left都设为50%. (3)要居中的di ...

  2. IntelliJ IDEA 2017.3尚硅谷-----代码水平垂直

    选择项目——右键

  3. 配置数据库属性validationQuery

    配置数据库时,属性validationQuery默认值为“select 1”,对于oracle值应为“select 1 from dual” validationQuery属性:用来验证数据库连接的语 ...

  4. 配置本地https

    参考 https://juejin.im/post/5a6db896518825732d7fd8e0 https://juejin.im/post/590ec765a22b9d0058fcfaa5 比 ...

  5. Scale9Sprite 的 setCapInsets中需要注意的地方

    在设置 setCapInsets()方法的y参数的时候,不直接取cocosStudio中的y,而是取Scale9Sprite.height - cocosStudio中的y.

  6. 8.1.1 IO

    IO对象无拷贝或赋值.进行IO操作的函数通常以引用的方式传递和返回流,且该引用不能是const的 确定一个流对象是否处于良好状态的最简单的方法是将它作为一个条件来使用 while (cin >& ...

  7. python调用sqlite

    参考资料:https://www.liaoxuefeng.com/wiki/1016959663602400/1017801751919456  https://www.cnblogs.com/lia ...

  8. my codestyle

    代码风格 缩进 缩进采用4个空格或tab. 原则是:如果地位相等,则不需要缩进:如果属于某一个代码的内部代码就需要缩进. 变量命名 变量命名遵守遵从驼峰命名法,统一使用lowerCamelCase风格 ...

  9. python 序列 倒着取元素

    当要倒着取元素时,用s[-2]只能取一个, 如果取多个时用s[-9:-1],注意,最后一个-1是不取出来的. 此时要用s[-9:] 最后一个空着就可以取出来了.

  10. C语言数据结构——第二章 线性表

    二.线性表 2.1-线性表简介 2.1.1-线性表的定义 线性表是由若干个相同特性的数据元素组成的有限序列.若该线性表不包含任何元素,则称为空表,此时长度为0,当线性表不为空时,表中的元素的个数就是线 ...