原文来我的公众号:Spark性能优化指南——初级篇

一. Spark作业原理

我们使用spark-submit提交一个Spark作业之后,这个作业就会启动一个对应的Driver进程。该进程是向集群管理器(Yarn,K8s)申请运行Spark作业需要使用的资源,这里的资源指的就是Executor进程。
YARN集群管理器会根据我们为Spark作业设置的资源参数,在各个工作节点上,启动一定数量的Executor进程,每个Executor进程都占有一定数量的内存和CPU core。
在申请到了作业执行所需的资源之后,Driver进程就会开始调度和执行我们编写的作业代码了。
Driver进程会将我们编写的Spark作业代码分拆为多个stage,每个stage执行一部分代码片段,并为每个stage创建一批task,然后将这些task分配到各个Executor进程中执行。
task是最小的计算单元,负责执行一模一样的计算逻辑(也就是我们自己编写的某个代码片段),只是每个task处理的数据不同而已。
一个stage的所有task都执行完毕之后,会在各个节点本地的磁盘文件中写入计算中间结果,然后Driver就会调度运行下一个stage。
下一个stage的task的输入数据就是上一个stage输出的中间结果。如此循环往复,直到将我们自己编写的代码逻辑全部执行完,并且计算完所有的数据,得到我们想要的结果为止。
Spark是根据shuffle类算子来进行stage的划分。如果我们的代码中执行了某个shuffle类算子(比如reduceByKey、join等),那么就会在该算子处,划分出一个stage界限来。
可以大致理解为,shuffle算子执行之前的代码会被划分为一个stage,shuffle算子执行以及之后的代码会被划分为下一个stage。
 
因此一个stage刚开始执行的时候,它的每个task可能都会从上一个stage的task所在的节点,去通过网络传输拉取需要自己处理的所有key,然后对拉取到的所有相同的key使用我们自己编写的算子函数执行聚合操作(比如reduceByKey()算子接收的函数)。这个过程就是shuffle。
当我们在代码中执行了cache/persist等持久化操作时,根据我们选择的持久化级别的不同,每个task计算出来的数据也会保存到Executor进程的内存或者所在节点的磁盘文件中。
 
因此Executor的内存主要分为三块:
第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;
第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;
第三块是让RDD持久化时使用,默认占Executor总内存的60%。
 
task的执行速度是跟每个Executor进程的CPU core数量有直接关系的。一个CPU core同一时间只能执行一个线程。而每个Executor进程上分配到的多个task,都是以每个task一条线程的方式,多线程并发运行的。
如果CPU core数量比较充足,而且分配到的task数量比较合理,那么通常来说,可以比较快速和高效地执行完这些task线程。
 

二.核心调优参数

num-executors:

该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。(建议50~100个左右的Executor进程)
 

executor-memory:

该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。(根据作业大小不同,建议设置4G~8G,num-executors乘以executor-memory,是不能超过队列的最大内存量的)
 

executor-cores:

该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。(建议设置为2~4个,且num-executors * executor-cores不要超过队列总CPU core的1/3~1/2)
 

driver-memory:

该参数用于设置Driver进程的内存(建议设置512M到1G)。
 

spark.default.parallelism:

该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。(建议为50~500左右,缺省情况下Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。Spark官网建议设置该参数为num-executors * executor-cores的2~3倍较为合适)
 

spark.storage.memoryFraction:

该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6(原则上是尽可能保证数据能够全部在内存中,但如果发现作业发生频繁的GC,就该考虑是否调小)
 

spark.shuffle.memoryFraction:

该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。(shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能)
微信扫描二维码,关注我的公众号
我的个人网站:http://www.itrensheng.com/

Spark性能优化指南——初级篇的更多相关文章

  1. 【转载】 Spark性能优化指南——基础篇

    转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能 ...

  2. 【转】【技术博客】Spark性能优化指南——高级篇

    http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236e ...

  3. 【转】Spark性能优化指南——基础篇

    http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a ...

  4. Spark性能优化指南——基础篇(转载)

    前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...

  5. Spark性能优化指南——基础篇

    本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一 ...

  6. Spark性能优化指南——高级篇

    本文转载自:https://tech.meituan.com/spark-tuning-pro.html 美团技术点评团队) Spark性能优化指南——高级篇 李雪蕤 ·2016-05-12 14:4 ...

  7. Spark性能优化指南——基础篇转

    前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...

  8. Spark性能优化指南--基础篇

    前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚 ...

  9. Spark性能优化指南-高级篇(spark shuffle)

    Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解

随机推荐

  1. sun.misc.Unsafe中一些常用方法记录

    sun.misc.Unsafe中一些常用方法记录 前情摘要 sun公司提供了可以用于直接操作内存的类,这个类就是sun.misc.Unsafe.因为Java本身是不会涉及到直接操作内存的,Java A ...

  2. tomcat 日志

    1.Tomcat的日志(./tomca/logs/) 分为5类,这里面 1和5比较重要 .catalina.--.log 或者 catalina.out: 引擎的日志文件 .host-manager. ...

  3. 动态规划------背包问题(c语言)

    /*背包问题: 背包所能容纳重量为10:共五件商品,商品重量用数组m存储m[5]={2,2,6,5,4}, 每件商品的价值用数组n存储,n[5]={6,3,5,4,6};求背包所能装物品的最大价值. ...

  4. 响应式Web设计:构建令人赞叹的Web应用程序的秘诀

    骨架屏(Skeleton Screen) 参考博客:https://medium.com/@owencm/reactive-web-design-the-secret-to-building-web- ...

  5. Jenkins新建节点找不到通过Java web启动代理?

    参考博客:Jenkins新建节点,启动方式没有“通过Java Web启动代理”选项怎么办? 在Jenkins中,打开“系统管理”→“管理节点”→“新建节点”页面时,“启动方式”选项没有“通过Java ...

  6. mitmproxy--Cannot establish TLS with client (sni: e.crashlytics.com): TlsException("(-1, 'Unexpected EOF')",) 解决办法

    按崔哥(https://cuiqingcai.com/5391.html)的安装步骤一步步下来,会报这个错误: Cannot establish TLS with client (sni: e.cra ...

  7. Pythone是什么鬼?

    认识 Python 人生苦短,我用 Python -- Life is short, you need Python 目标 Python 的起源 为什么要用 Python? Python 的特点 Py ...

  8. java 入门如何设计类

    2019/12/24   |    在校大二上学期    |    太原科技大学 初学java后,我们会发现java难点不在于Java语法难学,而是把我们挂在了如何设计类的“吊绳”上了.这恰恰也是小白 ...

  9. 关于...corresponds to your MySQL server version for the right syntax to use near '?' at line 1的解决办法

    完整报错信息: java.sql.SQLSyntaxErrorException: You have an error in your SQL syntax; check the manual tha ...

  10. ACM模板_axiomofchoice

    目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...