[HNOI2009]图的同构记数
题意
在所以置换下,本质不同的\(n\)阶图个数
做法
可以假想成\(K_n\),边有黑白两色,黑边存在于原图,白边存在于补图
由于\(n\le 60\),可以手算出拆分数不大,所以我们爆搜置换群
对于一个拆分方案(置换的分解序列)\((a_1,a_2,...,a_k)(a_1\le a_2\le ...\le a_k)\)
- 考虑某个因子内的黑边\((m=|a_i|)\),如果\((1,2)\)为黑边,则\((2,3),(3,4),...,(m,1)\)均为黑边
依次可推得有\(\left\lfloor\frac{m}{2}\right\rfloor\)个等价类(并不是\(m-1\)个,可以手玩一下) - 考虑两个因子件的黑边\((m_1=|a_i|,m_2=|a_j|,i\neq j)\),有\((m_1,m_2)\)个等价类
当然,对于一个拆分方案\((a_1,a_2,...,a_k)\)(以下\(num_i\)为\(i\)在其中出现的次数)
于置换显然不是双射关系,还得对应到若干个置换中去,统计置换个数(这部分网上有些题解有问题):
\[\frac{n!}{\prod\limits_{i=1}^k (a_i!)}\times \prod\limits_{i=1}^k ((a_i-1)!)\times\prod\limits_{i=1}^n \frac{1}{num_i!}=\frac{n!}{\prod\limits_{i=1}^k (a_i)\prod\limits_{i=1}^n (num_i!)}\]
[HNOI2009]图的同构记数的更多相关文章
- P4727 [HNOI2009]图的同构记数
传送门 如果我们把选出子图看成选出边,进而看成对边黑白染色,那么就是上一题的弱化版了,直接复制过来然后令\(m=2\)即可 不过直接交上去会T,于是加了几发大力优化 不知为何华丽的被小号抢了rank2 ...
- Luogu P4727-- 【HNOI2009】图的同构记数
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...
- 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...
- bzoj1488 [HNOI2009]图的同构 Burnside 引理
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...
- bzoj1488[HNOI2009]图的同构
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec M ...
- 记数排序 & 桶排序 & 基数排序
为什么要写这样滴一篇博客捏...因为一个新初一问了一道水题,结果就莫名其妙引起了战斗. 然后突然发现之前理解的桶排序并不是真正的桶排序,所以写一篇来区别下这三个十分相似的排序辣. 老年菜兔的觉醒!!! ...
- Python02 标准输入输出、数据类型、变量、随记数的生成、turtle模块详解
1 标准输出 python3利用 print() 来实现标准输出 def print(self, *args, sep=' ', end='\n', file=None): # known speci ...
- 记数问题(0)<P2013_1>
记数问题 (count.cpp/c/pas) [问题描述] 试计算在区间1到n的所有整数中,数字x(0≤x≤9)共出现了多少次?例如,在1到11中,即在1.2.3.4.5.6.7.8.9.10.11 ...
- bzoj 1488: [HNOI2009]图的同构
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...
随机推荐
- zip压缩包伪加密技术
一个 ZIP 文件由三个部分组成: 压缩源文件数据区 + 压缩源文件目录区 + 压缩源文件目录结束标志 压缩源文件数据区: 50 4B 03 04:这是头文件标记(0x04034b50) 14 00: ...
- 基于MySQL+MHA+Haproxy部署高可用负载均衡集群
一.MHA 概述 MHA(Master High Availability)是可以在MySQL上使用的一套高可用方案.所编写的语言为Perl 从名字上我们可以看到.MHA的目的就是为了维护Master ...
- Hanoi塔问题——递归
/////////////Hanoi塔问题///////#include<iostream>using namespace std;void hanoi(int i,char A,char ...
- Mac启动MongoDB报错:exception in initAndListen: NonExistentPath: Data directory /data/db not found., terminating
这是主要错误: initAndListen中的异常:NonExistentPath:找不到数据目录/ data / db. 最新版的Mac系统Catalina发生了令人惊讶的更改:它不允许更改根目录( ...
- Vue中的递归组件
递归函数我们都再熟悉不过了,也就是函数自己调用自己.递归组件也是类似的,在组件的template内部使用组件自身.那递归组件有什么使用场景呢? 我们都知道树这个数据结构就是一种递归的结构,因此我们可以 ...
- C# 数据类型详解以及变量、对象与内存
学习刘铁猛老师<C#语言入门详解>视频,针对其中重点知识点进行总结. 1.什么是类型? 类型又称为数据类型(Data Type),数据类型在数据结构中的定义是一个值的集合以及定义在这个值集 ...
- symfonos2
0x01 进入网页 啥也没有 0x02 目录爆破 啥也没有 0x03 端口扫描 知识盲区: ProFTPD 1.3.5 用ProFTPD服务权限执行复制命令,默认在'nobody'用户的特权下运行.通 ...
- Android中自定义xml文件给Spinner下拉框赋值并获取下拉选中的值
场景 实现效果如下 注: 博客: https://blog.csdn.net/badao_liumang_qizhi 关注公众号 霸道的程序猿 获取编程相关电子书.教程推送与免费下载. 实现 将布局改 ...
- 【mysql】索引相关的个人总结
重点参考: MySQL索引原理及慢查询优化 (美团技术分享网站):原理.示例优化都写的很好. 索引很难么?带你从头到尾捋一遍MySQL索引结构,不信你学不会!:原理写的很好. [从入门到入土]令人脱发 ...
- 1、SSH无密码访问
1.在需要无密码登录远程服务器的机器上(如A→B服务器)生成密码对 A:服务器操作: ssh-keygen -t rsa :输出的内容直接一路回车即可(enter) 执行上面一步,会在~/.ssh目录 ...