基于TensorFlow的MNIST手写数字识别-初级
一:MNIST数据集
MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件

分别是test set images,test set labels,training set images,training set labels
training set包括60000个样本,test set包括10000个样本。
test set中前5000个样本来自原始的NISTtraining set,后5000个样本来自原始的NIST test set,因此,前5000个样本比后5000个样本更简单和干净。
每个样本是28*28像素的图片




二:tensorflow构建模型识别MNIST
导入数据:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10]) #真实值
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, w) + b) #预测值
softmax的目的:将输出转化为是每个数字的概率
#计算交叉熵
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_label *tf.log(y), reduction_indices=[1]))
train = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
交叉熵:衡量预测值与真实值之间的差别,当然是越小越好
公式为:

其中y'是真实值,y为预测值
最后用梯度下降法优化参数即可
在Session中运行graph:
total_steps = 5000
batch_size = 100
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(total_steps+1):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(train,feed_dict={x: batch_x, y_label: batch_y})
预测正确率:
correct_prediction = tf.equal(tf.argmax(y, axis=1), tf.argmax(y_label, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.argmax()函数返回axis轴上最大值的index
tf.equal()函数返回的是布尔值,需要用tf.cast()方法转为tf.float32类型
最后在test set上进行预测:
step_per_test = 100
if step % step_per_test == 0:
print(step, sess.run(accuracy, feed_dict={x: mnist.test.images, y_label: mnist.test.labels}))
完整代码如下:
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_label = tf.placeholder(tf.float32, [None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, w) + b) #计算交叉熵
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_label *tf.log(y), reduction_indices=[1]))
train = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#eval
correct_prediction = tf.equal(tf.argmax(y, axis=1), tf.argmax(y_label, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) total_steps = 5000
batch_size = 100
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(total_steps+1):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(train,feed_dict={x: batch_x, y_label: batch_y}) step_per_test = 100
if step % step_per_test == 0:
print(step, sess.run(accuracy, feed_dict={x: mnist.test.images, y_label: mnist.test.labels}))
运行结果:

准确率为0.92左右
后面我们会构建更好的模型达到更高的正确率。
相关链接:
基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型
基于tensorflow的MNIST手写数字识别(二)--入门篇
基于tensorflow的MNIST手写数字识别(三)--神经网络篇
基于TensorFlow的MNIST手写数字识别-初级的更多相关文章
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- 基于TensorFlow的MNIST手写数字识别-深入
构建多层卷积神经网络时需要多组W和偏移项b,我们封装2个方法来产生W和b 初级MNIST中用0初始化W和b,这里用噪声初始化进行对称打破,防止产生梯度0,同时用一个小的正值来初始化b避免dead ne ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- Tensorflow之MNIST手写数字识别:分类问题(1)
一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点: 1.将离散特征的取值扩展 ...
- Tensorflow实现MNIST手写数字识别
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...
- [Python]基于CNN的MNIST手写数字识别
目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...
- Tensorflow之MNIST手写数字识别:分类问题(2)
整体代码: #数据读取 import tensorflow as tf import matplotlib.pyplot as plt import numpy as np from tensorfl ...
- TensorFlow——MNIST手写数字识别
MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/ 一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...
- 持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型
持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tens ...
随机推荐
- 当Parallel遇上了DI - Spring并行数据聚合最佳实践
分析淘宝PDP 让我们先看个图, Taobao的PDP(Product Detail Page)页. 打开Chrome Network面板, 让我们来看taobao是怎么加载这个页面数据的. 根据经验 ...
- Jmeter基础学习-下载及安装
1. Jmeter下载路径:http://jmeter.apache.org/download_jmeter.cgi 进入Jmeter下载界面后英语不好+技术不灵的同学会蒙圈,下载那个呢? *Bina ...
- POJ 2456 Aggressive cows (二分)
题目传送门 POJ 2456 Description Farmer John has built a new long barn, with N (2 <= N <= 100,000) s ...
- Navicat10.1.11使用记录
设计表的时候有个允许空值(null),如果不勾选,则无法插入null(但是可以插入‘null’),且默认值不能为null: 如果某个字段没有设置默认值,而插入时又没有给此字段赋值,则会提示warnin ...
- rest实践2
通过url读取图片资源 其他的上传图片和对应的添加信息到数据库等的相关操作则引入crud来操作,编写相关代码的话==>要引入相关的crud包.
- Spring Boot2 系列教程 (四) | 集成 Swagger2 构建强大的 RESTful API 文档
前言 快过年了,不知道你们啥时候放年假,忙不忙.反正我是挺闲的,所以有时间写 blog.今天给你们带来 SpringBoot 集成 Swagger2 的教程. 什么是 Swagger2 Swagger ...
- Java.Json模板.省市区三级JSON
[ { "name": "北京市", "city": [ { "name": "北京市", &quo ...
- MyBatis5——Mybatis整合log4j、延迟加载
开启日志:Log4j (1)加入jar包 (2)在conf.xml中配置开启日志: <settings> <!-- 开启日志,并指定要使用的具体日志为log4j -- ...
- GP工作室-团队项目Beta冲刺
GP工作室-团队项目Beta冲刺 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience/ 这个作业要求 ...
- STM32 调试 24L01 心得
大部分使用STM32开发nrf24L01的用户基本都是照搬常见的几个开发板的源代码,在这里我做一些总结: 1.源代码中在while(1)的循环中有 NRF24L01_TX_Mode();或NRF24L ...