flink 触发器

触发器确定窗口(由窗口分配程序形成)何时准备由窗口函数处理。每个WindowAssigner都带有一个默认触发器。

如果默认触发器不适合需求,我们就需要自定义触发器。

主要方法

触发器接口有五种方法,允许触发器对不同的事件作出反应

  1. onElement()添加到每个窗口的元素都会调用此方法。
  2. onEventTime()当注册的事件时间计时器触发时,将调用此方法。
  3. onProcessingTime()当注册的处理时间计时器触发时,将调用此方法。
  4. onMerge()与有状态触发器相关,并在两个触发器对应的窗口合并时合并它们的状态,例如在使用会话窗口时。(目前没使用过,了解不多)
  5. clear()执行删除相应窗口时所需的任何操作。(一般是删除定义的状态、定时器等)

TriggerResult

onElement(),onEventTime(),onProcessingTime()都要求返回一个TriggerResult

TriggerResult包含以下内容

  1. CONTINUE:表示啥都不做。
  2. FIRE:表示触发计算,同时保留窗口中的数据
  3. PURGE:简单地删除窗口的内容,并保留关于窗口和任何触发器状态的任何潜在元信息。
  4. FIRE_AND_PURGE:触发计算,然后清除窗口中的元素。(默认情况下,预先实现的触发器只触发而不清除窗口状态。)

案例

  • 需求
  1. 当窗口中的数据量达到一定数量的时候触发计算
  2. 根据执行时间每隔一定时间且窗口中有数据触发计算,如果没有数据不触发计算
  3. 窗口关闭的时候清除数据

实现过程

  • 依赖
 <properties>
<hadoop.version>3.1.1.3.1.0.0-78</hadoop.version>
<flink.version>1.9.1</flink.version>
<scala.binary.version>2.11</scala.binary.version>
<scala.version>2.11.7</scala.version>
</properties> <dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-core</artifactId>
<version>${flink.version}</version>
</dependency> </dependencies>
  • 实现代码
//调用
dStream
.keyBy(_.event_id)
.window(TumblingEventTimeWindows.of(Time.hours(1)))
.trigger(new CustomTrigger(10, 1 * 60 * 1000L)) //-------------------------------------------------------------------------
package com.meda.demo import java.text.SimpleDateFormat import com.meda.utils.DatePattern
import org.apache.flink.api.common.functions.ReduceFunction
import org.apache.flink.api.common.state.ReducingStateDescriptor
import org.apache.flink.streaming.api.windowing.triggers.{Trigger, TriggerResult}
import org.apache.flink.streaming.api.windowing.windows.TimeWindow class CustomTrigger extends Trigger[eventInputDT, TimeWindow] {
//触发计算的最大数量
private var maxCount: Long = _
//定时触发间隔时长 (ms)
private var interval: Long = 60 * 1000
//记录当前数量的状态
private lazy val countStateDescriptor: ReducingStateDescriptor[Long] = new ReducingStateDescriptor[Long]("counter", new Sum, classOf[Long])
//记录执行时间定时触发时间的状态
private lazy val processTimerStateDescriptor: ReducingStateDescriptor[Long] = new ReducingStateDescriptor[Long]("processTimer", new Update, classOf[Long])
//记录时间时间定时器的状态
private lazy val eventTimerStateDescriptor: ReducingStateDescriptor[Long] = new ReducingStateDescriptor[Long]("eventTimer", new Update, classOf[Long]) def this(maxCount: Int) {
this()
this.maxCount = maxCount
} def this(maxCount: Int, interval: Long) {
this(maxCount)
this.interval = interval
} override def onElement(element: eventInputDT, timestamp: Long, window: TimeWindow, ctx: Trigger.TriggerContext): TriggerResult = {
val countState = ctx.getPartitionedState(countStateDescriptor)
//计数状态加1
countState.add(1L) //如果没有设置事件时间定时器,需要设置一个窗口最大时间触发器,这个目的是为了在窗口清除的时候 利用时间时间触发计算,否则可能会缺少部分数据
if (ctx.getPartitionedState(eventTimerStateDescriptor).get() == 0L) {
ctx.getPartitionedState(eventTimerStateDescriptor).add(window.maxTimestamp())
ctx.registerEventTimeTimer(window.maxTimestamp())
} if (countState.get() >= this.maxCount) {
//达到指定指定数量
//删除事件时间定时触发的状态
ctx.deleteProcessingTimeTimer(ctx.getPartitionedState(processTimerStateDescriptor).get())
//清空计数状态
countState.clear()
//触发计算
TriggerResult.FIRE
} else if (ctx.getPartitionedState(processTimerStateDescriptor).get() == 0L) {
//未达到指定数量,且没有指定定时器,需要指定定时器
//当前定时器状态值加上间隔值
ctx.getPartitionedState(processTimerStateDescriptor).add(ctx.getCurrentProcessingTime + interval)
//注册定执行时间定时器
ctx.registerProcessingTimeTimer(ctx.getPartitionedState(processTimerStateDescriptor).get())
TriggerResult.CONTINUE
} else {
TriggerResult.CONTINUE
}
} // 执行时间定时器触发
override def onProcessingTime(time: Long, window: TimeWindow, ctx: Trigger.TriggerContext): TriggerResult = {
if (ctx.getPartitionedState(countStateDescriptor).get() > 0 && (ctx.getPartitionedState(processTimerStateDescriptor).get() == time)) {
println(s"数据量未达到 $maxCount ,由执行时间触发器 ctx.getPartitionedState(processTimerStateDescriptor).get()) 触发计算")
ctx.getPartitionedState(processTimerStateDescriptor).clear()
ctx.getPartitionedState(countStateDescriptor).clear()
TriggerResult.FIRE
} else {
TriggerResult.CONTINUE
}
} //事件时间定时器触发
override def onEventTime(time: Long, window: TimeWindow, ctx: Trigger.TriggerContext): TriggerResult = {
if ((time >= window.maxTimestamp()) && (ctx.getPartitionedState(countStateDescriptor).get() > 0L)) { //还有未触发计算的数据
println(s"事件时间到达最大的窗口时间,并且窗口中还有未计算的数据:${ctx.getPartitionedState(countStateDescriptor).get()},触发计算并清除窗口")
ctx.getPartitionedState(eventTimerStateDescriptor).clear()
TriggerResult.FIRE_AND_PURGE
} else if ((time >= window.maxTimestamp()) && (ctx.getPartitionedState(countStateDescriptor).get() == 0L)) { //没有未触发计算的数据
println("事件时间到达最大的窗口时间,但是窗口中没有有未计算的数据,清除窗口 但是不触发计算")
TriggerResult.PURGE
} else {
TriggerResult.CONTINUE }
} //窗口结束时清空状态
override def clear(window: TimeWindow, ctx: Trigger.TriggerContext): Unit = {
// println(s"清除窗口状态,定时器")
ctx.deleteEventTimeTimer(ctx.getPartitionedState(eventTimerStateDescriptor).get())
ctx.deleteProcessingTimeTimer(ctx.getPartitionedState(processTimerStateDescriptor).get())
ctx.getPartitionedState(processTimerStateDescriptor).clear()
ctx.getPartitionedState(eventTimerStateDescriptor).clear()
ctx.getPartitionedState(countStateDescriptor).clear()
} //更新状态为累加值
class Sum extends ReduceFunction[Long] {
override def reduce(value1: Long, value2: Long): Long = value1 + value2
} //更新状态为取新的值
class Update extends ReduceFunction[Long] {
override def reduce(value1: Long, value2: Long): Long = value2
} }

留下的疑问:

之前看资料的时候好像说定时器只能设置一个,你设置多个它也只会选择一个执行。

但是我这里事件、执行时间定时器都设置,好像都生效了。这点还没看懂。

后续研究下啥情况。

本文为个人原创文章,转载请注明出处。!!!!

flink 自定义触发器 定时或达到数量触发的更多相关文章

  1. Flink 自定义触发器

    import org.apache.flink.api.common.state.ReducingState; import org.apache.flink.api.common.state.Red ...

  2. zabbix自定义触发器

    zabbix中监控项仅负责收集数据,而通常收集数据的目的还包括在某指标对应的数据超出合理范围时给相关人员发送告警信息,"触发器"正式 用于为监控项所收集的数据定义阈值,每一个触发器 ...

  3. Android中仿淘宝首页顶部滚动自定义HorizontalScrollView定时水平自动切换图片

    Android中仿淘宝首页顶部滚动自定义HorizontalScrollView定时水平自动切换图片 自定义ADPager 自定义水平滚动的ScrollView效仿ViewPager 当遇到要在Vie ...

  4. jquery的自定义事件通过on绑定trigger触发

    jquery绑定自定义事件,可以实现预先绑定好一个处理方法,当需要使用的时候利用jquery trigger来触发自定义事件,以达到方便快捷的目的.我们来假设一个这样的场景,一个textarea中的字 ...

  5. Flink自定义Sink

    Flink自定义Sink Flink 自定义Sink,把socket数据流数据转换成对象写入到mysql存储. #创建Student类 public class Student { private i ...

  6. 4、flink自定义source、sink

    一.Source 代码地址:https://gitee.com/nltxwz_xxd/abc_bigdata 1.1.flink内置数据源 1.基于文件 env.readTextFile(" ...

  7. zabbix自定义触发器进行监控

    给某一主机创建触发器 触发器属性,其中centos是主机名,也就是你监控的那台主机的名字,可以点击bp2,查看该主机的hostname 检测该触发器 在该主机下可以看到刚创建的触发器 最后我们给该主机 ...

  8. Flink 自定义source和sink,获取kafka的key,输出指定key

    --------20190905更新------- 沙雕了,可以用  JSONKeyValueDeserializationSchema,接收ObjectNode的数据,如果有key,会放在Objec ...

  9. Zabbix设置触发器调用远程主机脚本实现触发告警后自动启动自愈功能

    参考:https://www.cnblogs.com/xiami-xm/p/8929163.html 当zabbix添加触发器后触发告警后可以设置发送邮件及短信告警,但是恢复故障需要运维人员收到告警以 ...

随机推荐

  1. Go网络编程

    概述 网络协议 从应用的角度出发,协议可理解为"规则",是数据传输和数据的解释的规则.假设,A.B双方欲传输文件.规定: 第一次,传输文件名,接收方接收到文件名,应答OK给传输方: ...

  2. 还看不懂同事代码?快来补一波 Java 7 语法特性

    前言 Java 平台自出现到目前为止,已经 20 多个年头了,这 20 多年间 Java 也一直作为最流行的程序设计语言之一,不断面临着其他新兴编程语言的挑战与冲击.Java 语言是一种静态强类型语言 ...

  3. 使用Rancher Server部署本地多节点K8S集群

    当我第一次开始我的Kubernetes之旅时,我一直在寻找一种设置本地部署环境的方式.很多人常常会使用minikube或microk8s,这两者非常适合新手在单节点集群环境下进行操作.但当我已经了解了 ...

  4. k8s(1.14.0)+etcd(3.3.10)+flanneld(0.10)

    K8s(1.14) 几张比较不错的图 1.kubernetes 组件图 kubernetes 架构图 2.kubernetes 网络架构图 数据从源容器中发出后,经由所在主机的docker0虚拟网卡转 ...

  5. C++装饰器模式

    UML图: #include <iostream> #include <string> #include <windows.h> using namespace s ...

  6. html 贪吃蛇代码

    最近在搞自己的网站,维护的时候准备放个贪吃蛇上去,顶一下原有的页面. 这个贪吃蛇有一点毒.原来设定了100级:100级刚开局就挂了.后来改掉了选项菜单,修复了. 还有什么bug,欢迎点击侧边的QQ按钮 ...

  7. Java之String类用法总结

    String类概述: 1.String类代表字符串.Java 程序中的所有字符串字面值(如"abc")都作为此类的实例实现. 2.String是一个final类,代表不可变的字符序 ...

  8. 【C_Language】---C文件学习

    ---恢复内容开始--- 又看了一遍文件的知识点了,断断续续已经看了2-3遍,也就这次花了点时间做了一下总结,以后我想都不会再去翻书了,哈哈. 1. 基于缓冲区的文件操作2. 打开关闭文件3. 单个字 ...

  9. java 中文乱码问题

    1.要记住的事实 java的class文件是utf-8编码的,jvm使用utf-16,而java的字符串使用unicode编码 2.java支持的字符集 java支持的字符集可以通过java.nio. ...

  10. Oracle Autonomous Health Framework (AHF) 解读

    AHF介绍 Oracle在2019年10月18日发布自治健康框架Autonomous Health Framework (AHF) 19.3,将ORAchk,EXAchk,TFA三种诊断工具合并入AH ...