前言
我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑踩过的雷总结出来的,现在在这里分享一下给大家,因为很多伙伴是接触Python编程入门不久,也希望大家少走弯路,多少有些地方可以给大家借鉴。
每天都有程序员定时讲解Python技术,分享一些学习的方法和需要留意的小细节,要资料加 624440745
 
文章目录
1. 项目文件事先做好归档
2. 永远不要手动修改源数据并且做好备份
3. 做好路径的正确配置
4. 代码必要的地方做好备注与说明
5. 加速你的Python循环代码
6. 可视化你的循环代码进度
7. 使用高效的异常捕获工具
8. 要多考虑代码健壮性
1. 项目文件事先做好归档
每次开始一个新工作的时候,以前的我总是贪图方便,Code、Data、文档都集中放在一个文件夹内,看起来很乱,一度让回溯过程十分痛苦,或者是换了部电脑,文件全都运行不行了,需要自行修改路径,十分痛苦。
经过自己一番探索,大家可以大致将项目分成几个子文件夹,code放在主文件夹里:
2. 永远不要手动修改源数据并且做好备份
我们需要对源数据进行好备份,方便我们下一次进行回溯,可以进行下一步的操作或者是对中间步骤的修改,而且,对代码等其他文件也是需要做好备份的,以免出现意外丢失。
这里来自良许Linux 的一篇文章,推荐了4个工具:
Git版本控制系统
Rsync文件备份
Dropbox云存储
Time Machine时光机器
更多的工具介绍和使用我这边就不展开,大家可以去自行了解呗。
3. 做好路径的正确配置
很多同学在写路径的时候都很喜欢直接用绝对路径,虽然一般情况下不会有什么问题,但如果代码共享给其他人学习或者运行的时候,问题就来了,很多情况下都不能直接跑通,
建议:
使用相对路径:脚本位于主目录下,其他资源(如数据、第三方包等)在其同级或低级目录下,如 ./data/processed/test1.csv
全局路径配置变量:
# 设置主目录
HOME_PATH = r'E:ML90615- PROJECT1'
# 读取数据
data = open(HOME_PATH+'/data/processed/test1.csv')
data = pd.read_csv(data)
data.head()
4. 代必要的地方做好备注与说明
这个我相信大多数人都感同身受了,不信?拿回一个月前自己写的代码看看吧,看一下能看懂多少(如果没有做好备注说明的话)
5. 加速你的Python循环代码
Ps:很多人在学习Python的过程中,往往因为遇问题解决不了或者没好的教程从而导致自己放弃,为此我整理啦从基础的python脚本到web开发、爬虫、django、数据挖掘等【PDF等】需要的可以进Python全栈开发交流.裙 :一久武其而而流一思(数字的谐音)转换下可以找到了,里面有最新Python教程项目可拿,不懂的问题有老司机解决哦,一起相互监督共同进步
6. 可视化你的循环代码进度
这里介绍一个Python库,tqdm,先安装一下:pip install tqdm
这个是一个可以显示循环进度的库,有了它就可以更加运筹帷幄了。
 
大家可以看下面的例子:
7. 使用高效的异常捕获工具
异常bug定位,以前的我经常也是一条print()函数走到底,虽然说也没什么问题,但效率上还是会比较慢,后来发现了一个叫PySnooper的装饰器,仿佛发现了新大陆。
我们一般debug,都是在我们可能觉得会有问题的地方,去打印输出,看下实际输出了什么,然后思考问题所在,这需要我们去改code,非常细致地改,相比较直接加个装饰器,是十分麻烦的。
大家可以看看Example:
import pysnooper
@pysnooper.snoop('./file.log')
def number_to_bits(number):
if number:
bits = []
while number:
number, remainder = divmod(number, 2)
bits.insert(0, remainder)
return bits
else:
return [0]
number_to_bits(6)
我们把函数每一步的输出都保存为file.log,我们可以直接去看到底哪里出了问题。
8. 要多考虑代码健壮性
何为代码的健壮性,顾名思义,就是可以抵挡得住各种异常场景的测试,异常处理工作由“捕获”和“抛出”两部分组成。“捕获”指的是使用 try … except 包裹特定语句,妥当的完成错误流程处理。而恰当的使用 raise 主动“抛出”异常,更是优雅代码里必不可少的组成部分,下面总结几点供大家参考:
 
1知道要传入的参数是什么,类型,个数 (异常处理,逻辑判断)
def add(a, b):
if isinstance(a, int) and isinstance(b, int):
return a+b
else:
return '参数类型错误'
print(add(1, 2))
print(add(1, 'a'))
2)只做最精准的异常捕获
 
我们有的时候想着让脚本work才是王道,所以不管三七二十一就搞一个大大的try…except把整块代码包裹起来,但这样很容易把原本该被抛出的 AttibuteError 吞噬了。从而给我们的 debug 过程增加了不必要的麻烦。
 
所以,我们永远只捕获那些可能会抛出异常的语句块,而且尽量只捕获精确的异常类型,而不是模糊的 Exception。
 
from requests.exceptions import RequestException
def save_website_title(url, filename):
try:
resp = requests.get(url)
except RequestException as e:
print(f'save failed: unable to get page content: {e}')
return False
# 这段正则操作本身就是不应该抛出异常的,所以我们没必要使用 try 语句块
# 假如 group 被误打成了 grop 也没关系,程序马上就会通过 AttributeError 来
# 告诉我们。
obj = re.search(r'<title>(.*)</title>', resp.text)
if not obj:
print('save failed: title tag not found in page content')
return False
title = obj.group(1)
try: with open(filename, 'w') as fp:
fp.write(title)
except IOError as e:
print(f'save failed: unable to write to file {filename}: {e}')
return False
else:
return True
3)异常处理不应该喧宾夺主
 
像上一条说到的异常捕获要精准,但如果每一个都很精准的话,其实我们的代码里就会有很多try…except语句块,以至于扰乱核心代码,代码整体阅读性。
 
这里,我们可以利用上下文管理器来改善我们的异常处理流程,简化重复的异常处理逻辑。
 
class raise_api_error:
"""captures specified exception and raise ApiErrorCode instead
:raises: AttributeError if code_name is not valid
"""
def __init__(self, captures, code_name):
self.captures = captures
self.code = getattr(error_codes, code_name)
def __enter__(self):
# 该方法将在进入上下文时调用
return self
def __exit__(self, exc_type, exc_val, exc_tb):
# 该方法将在退出上下文时调用
# exc_type, exc_val, exc_tb 分别表示该上下文内抛出的
# 异常类型、异常值、错误栈
if exc_type is None:
return False
if exc_type == self.captures:
raise self.code from exc_val
return False
在上面的代码里,我们定义了一个名为 raise_api_error 的上下文管理器,它在进入上下文时什么也不做。但是在退出上下文时,会判断当前上下文中是否抛出了类型为 self.captures 的异常,如果有,就用 APIErrorCode 异常类替代它。
使用上下文管理器后,简洁的代码如下
def upload_avatar(request):
"""用户上传新头像"""
with raise_api_error(KeyError, 'AVATAR_FILE_NOT_PROVIDED'):
avatar_file = request.FILES['avatar']
with raise_api_error(ResizeAvatarError, 'AVATAR_FILE_INVALID'),
raise_api_error(FileTooLargeError, 'AVATAR_FILE_TOO_LARGE'):
resized_avatar_file = resize_avatar(avatar_file)
with raise_api_error(Exception, 'INTERNAL_SERVER_ERROR'):
request.user.avatar = resized_avatar_file
return HttpResponse({
 
推荐我们的python学习基地,看老程序是如何学习的!从基础的python脚本、爬虫、django、数据挖掘等编程技术,工作经验,还有前辈精心为学习python的小伙伴整理零基础到项目实战的资料,!每天都有程序员定时讲解Python技术,分享一些学习的方法和需要留意的小细节,要资料加 624440745

Python核心编程:《8个实践性建议》的更多相关文章

  1. python核心编程(第二版)习题

    重新再看一遍python核心编程,把后面的习题都做一下.

  2. Python核心编程这本书的一些错误

    <Python核心编程第二版>这本书比<Python基础教程第二版修订版>详细很多,丰富了很多细节,虽然它是一本经典的入门书,但我发现还是存在一些明显的错误.在面向对象编程这一 ...

  3. Python核心编程-描述符

    python中,什么描述符.描述符就是实现了"__get__"."__set__"或"__delete__" 方法中至少一个的对象.什么是非 ...

  4. Python核心编程-闭包

    百度搜了一下闭包的概念:简而言之,闭包的作用就是在外部函数执行完并返回后,闭包使得收机制不会收回函数所占用的资源,因为内部函数的执行需要依赖外函数中的变量.这是对闭包作用的非常直白的描述,不专业也不严 ...

  5. python核心编程第二版笔记

    python核心编程第二版笔记由网友提供:open168 python核心编程--笔记(很详细,建议收藏) 解释器options:1.1 –d   提供调试输出1.2 –O   生成优化的字节码(生成 ...

  6. 学习《Python核心编程》做一下知识点提要,方便复习(一)

    学习<Python核心编程>做一下知识点提要,方便复习. 计算机语言的本质是什么? a-z.A-Z.符号.数字等等组合成符合语法的字符串.供编译器.解释器翻译. 字母组合后产生各种变化拿p ...

  7. python核心编程--笔记

    python核心编程--笔记 的解释器options: 1.1 –d   提供调试输出 1.2 –O   生成优化的字节码(生成.pyo文件) 1.3 –S   不导入site模块以在启动时查找pyt ...

  8. Python核心编程第二版(中文).pdf 目录整理

    python核心编程目录 Chapter1:欢迎来到python世界!-页码:7 1.1什么是python 1.2起源  :罗萨姆1989底创建python 1.3特点 1.3.1高级 1.3.2面向 ...

  9. Python核心编程

    对<Python核心编程>的褒奖" The long-awaited second edition of Wesley Chun's Core PythonProgramming ...

  10. python经典书籍推荐:Python核心编程

    作者:熊猫烧香 链接:www.pythonheidong.com/blog/article/27/ 来源:python黑洞网 对<Python核心编程>的褒奖 “ The long-awa ...

随机推荐

  1. selenium常见的元素定位方法

    一.获取元素 1)通过谷歌浏览器自动的工具访问百度首页,我们可以看到,页面上的元素都是由一行行的代码组成的,它们之间有层级地组织起来,每个元素之间都有不同的标签和值,我们可以通过这些不同的标签和值来找 ...

  2. GP工作室——系统设计

    团队作业第二次--系统设计 问题 答案 这个作业属于哪个课程 软件工程 这个作业要求在哪里 作业要求 团队名称 GP工作室 这个作业的目标 对项目软件进行更为详细的系统性设计 按照本游戏的设计要求,我 ...

  3. 个人第四次作业Alpha2版本测试

    个人第四次作业Alpha2版本测试 这个作业属于哪个课程 软件工程 这个作业要求在哪里 作业要求 团队名称 GP工作室 这个作业的目标 对其他小组的项目进行测试 测试人员 陈杰 学号 20173102 ...

  4. Arrays.asList()用法梳理

    Arrays.asList()用法梳理 asList概述 Arrays是java容器相关操作的工具类,asList方法将Array转换为list,是Array和List之间的桥梁. asList本质 ...

  5. edltplus使用正则表达式替换多余空行

    24-7 <font style="font-weight:bold;">24-7</font><div class="tab_conten ...

  6. python中元类(metaclass)的理解

    原文地址:http://www.cnblogs.com/tkqasn/p/6524879.html 一:类也是对象 类就是一组用来描述如何生成一个对象的代码. 类也是一个对象,只要你使用关键字clas ...

  7. HDU_5602_概率dp

    http://acm.hdu.edu.cn/showproblem.php?pid=5602 dp[1][i][j]表示轮到第二个人操作时,第一人总和i,第二人总和j,第一人胜的最小概率(因为每个人都 ...

  8. 2.5D(伪3D)站点可视化第一弹

    楔子 最近要做一个基站站点的可视化呈现项目. 我们首先尝试的是三维的可视化技术来程序,但是客户反馈的情况是他们的客户端电脑比较差,性能效率都会不好,甚至有的还是云主机. 因此我们先做了一个性能比较极致 ...

  9. Go语言实现:【剑指offer】变态跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...

  10. Go语言实现:【剑指offer】二叉树中和为某一值的路径

    该题目来源于牛客网<剑指offer>专题. 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路 ...