题意:有n个鸽子,你每秒随机喂一只鸽子,每只鸽子吃k次就饱了。求期望多少秒之后全饱了。n <= 50, k <= 1000。

解:有两种做法。一种直接DP的n2k做法在。我用的是Min-Max容斥 + NTT优化DP。

先Min-Max容斥,由于鸽子是等价的,所以相当于求m只鸽子期望多少秒之后有一只饱了。

讲不清楚...看题解吧。

注意题解中m个盒子的答案为什么放了i + 1个球,这是因为我们把最后一个球拿出来考虑了。所以唯一放满k个球的盒子的贡献是1 / (k - 1)!

 #include <bits/stdc++.h>

 const int MO = ;
const int N = ; int n, K, fac[N], inv[N], invn[N];
int f[][N], g[][N], A[N * ], B[N * ], r[N * ]; inline int C(int n, int m) {
if(n < || m < || n < m) return ;
return 1ll * fac[n] * invn[m] % MO * invn[n - m] % MO;
} inline int qpow(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1ll * ans * a % MO;
a = 1ll * a * a % MO;
b = b >> ;
}
return ans;
} inline int Inv(int x) {
return qpow(x, MO - );
} inline void prework(int n) {
static int R = ;
if(R == n) return;
R = n;
int lm = ;
while(( << lm) < n) lm++;
for(int i = ; i < n; i++) {
r[i] = (r[i >> ] >> ) | ((i & ) << (lm - ));
}
return;
} inline void NTT(int *a, int n, int f) {
prework(n);
for(int i = ; i < n; i++) {
if(i < r[i]) {
std::swap(a[i], a[r[i]]);
}
}
for(int len = ; len < n; len <<= ) {
int Wn = qpow(, (MO - ) / (len << ));
if(f == -) Wn = Inv(Wn);
for(int i = ; i < n; i += (len << )) {
int w = ;
for(int j = ; j < len; j++) {
int t = 1ll * a[i + len + j] * w % MO;
a[i + len + j] = (a[i + j] - t) % MO;
a[i + j] = (a[i + j] + t) % MO;
w = 1ll * w * Wn % MO;
}
}
}
if(f == -) {
int inv = Inv(n);
for(int i = ; i < n; i++) {
a[i] = 1ll * a[i] * inv % MO;
}
}
return;
} int main() { scanf("%d%d", &n, &K); fac[] = inv[] = invn[] = ;
fac[] = inv[] = invn[] = ;
for(int i = ; i <= n * K; i++) {
fac[i] = 1ll * fac[i - ] * i % MO;
inv[i] = 1ll * inv[MO % i] * (MO - MO / i) % MO;
invn[i] = 1ll * invn[i - ] * inv[i] % MO;
} int len = ;
while(len <= n * K) len <<= ;
g[][] = ;
memcpy(B, invn, K * sizeof(int));
NTT(B, len, );
for(int i = ; i <= n; i++) {
/*for(int j = 0; j <= i * K; j++) {
/// g[i][j] f[i][j]
for(int k = 0; k < K && k <= j; k++) {
g[i][j] = (g[i][j] + 1ll * g[i - 1][j - k] * invn[k] % MO) % MO;
f[i][j] = (f[i][j] + 1ll * f[i - 1][j - k] * invn[k] % MO) % MO;
}
if(j >= K) f[i][j] = (f[i][j] + 1ll * g[i - 1][j - K] * invn[K - 1] % MO) % MO;
}*/
memcpy(A, g[i - ], n * K * sizeof(int));
memset(A + n * K, , (len - n * K) * sizeof(int));
NTT(A, len, );
for(int j = ; j < len; j++) {
A[j] = 1ll * A[j] * B[j] % MO;
}
NTT(A, len, -);
for(int j = ; j <= i * K; j++) {
g[i][j] = A[j];
}
memcpy(A, f[i - ], n * K * sizeof(int));
memset(A + n * K, , (len - n * K) * sizeof(int));
NTT(A, len, );
for(int j = ; j < len; j++) {
A[j] = 1ll * A[j] * B[j] % MO;
}
NTT(A, len, -);
for(int j = ; j <= i * K; j++) {
f[i][j] = A[j];
if(j >= K) {
f[i][j] = (f[i][j] + 1ll * g[i - ][j - K] * invn[K - ] % MO) % MO;
}
}
} int ans = ;
for(int i = ; i <= n; i++) {
int temp = ;
for(int j = K - ; j <= i * K; j++) {
temp = (temp + 1ll * fac[j - ] * f[i][j] % MO * qpow(inv[i], j) % MO * j % MO) % MO;
}
temp = 1ll * temp * n % MO * inv[i] % MO * C(n, i) % MO;
if(i & ) {
ans = (ans + temp) % MO;
}
else {
ans = (ans - temp) % MO;
}
}
printf("%d\n", (ans + MO) % MO);
return ;
}

AC代码

UOJ#449 喂鸽子的更多相关文章

  1. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  2. UOJ#449. 【集训队作业2018】喂鸽子(期望dp)

    题意 有 \(n\) 只鸽子,每只鸽子需要 \(k\) 粒玉米才能喂饱.问每次随意喂给 \(n\) 个鸽子中的一个,期望多久所有鸽子都被喂饱. 对于 \(998244353\) 取模. 数据范围 \( ...

  3. UOJ#449. 【集训队作业2018】喂鸽子 min-max容斥,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ449.html 题解 设 f(i) 表示给 i 只鸽子喂食使得至少一只鸽子被喂饱的期望次数,先 min-max容斥 一下. ...

  4. UOJ 449 【集训队作业2018】喂鸽子 【生成函数,min-max容斥】

    这是第100篇博客,所以肯定是要水过去的. 首先看到这种形式的东西首先min-max容斥一波,设\(f_{c,s}\)表示在\(c\)只咕咕中,经过\(s\)秒之后并没有喂饱任何一只的概率. \[ \ ...

  5. @noi.ac - 443@ 老头子的话

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 老头子是小学校长,小学生(大哥)们都很听老头子的话.一天,老头子 ...

  6. @atcoder - AGC038E@ Gachapon

    目录 @description@ @solution - 1@ @accepted code - 1@ @solution - 2@ @accepted code - 2@ @details@ @de ...

  7. 【UOJ#386】【UNR#3】鸽子固定器(贪心)

    [UOJ#386][UNR#3]鸽子固定器(贪心) 题面 UOJ 题解 一个不难想到的暴力做法是把东西按照\(s\)排序,这样子我们枚举极大值和极小值,那么我们选择的一定是这一段之间\(v\)最大的那 ...

  8. UOJ#386. 【UNR #3】鸽子固定器(链表)

    题意 题目链接 为了固定S**p*鸽鸽,whx和zzt来到鸽具商店选购鸽子固定器. 鸽具商店有 nn 个不同大小的固定器,现在可以选择至多 mm 个来固定S**p*鸽鸽.每个固定器有大小 sisi 和 ...

  9. UOJ.386.[UNR #3]鸽子固定器(贪心 链表)

    题目链接 \(Description\) 选最多\(m\)个物品,使得它们的\((\sum vi)^{dv}-(s_{max}-s_{min})^{du}\)最大. \(Solution\) 先把物品 ...

随机推荐

  1. matlab中乘法和点乘以及除法和点除的联系是什么?

    一,*和.*的联系和区别. 1,在进行数值运行和数值乘矩阵,这两种没有区别,例如:a*b=a.*b; a*B=a.*B; B*a=B.*a (其中小写字母表示数值,大写字母表示矩阵,下同). 2,在处 ...

  2. duilib教程之duilib入门简明教程11.部分bug

    一.WindowImplBase的bug    在第8个教程[2013 duilib入门简明教程 -- 完整的自绘标题栏(8)]中,可以发现窗口最大化之后有两个问题,    1.最大化按钮的样式还是没 ...

  3. Linq Lambda 中group by多列后count数量的写法

    直接上代码: List<Student> ss = new List<Student>(); Student ss1 = , Age = , Name = " }; ...

  4. 响应式编程(Reactive Programming)(Rx)介绍

    很明显你是有兴趣学习这种被称作响应式编程的新技术才来看这篇文章的. 学习响应式编程是很困难的一个过程,特别是在缺乏优秀资料的前提下.刚开始学习时,我试过去找一些教程,并找到了为数不多的实用教程,但是它 ...

  5. 19.SimLogin_case06

    # 使用自造的cookies登录GitHub import requests from lxml import etree str = '_octo=GH1.1.518803230.153726461 ...

  6. 面试系列 31 zk都有哪些使用场景

    大致来说,zk的使用场景如下,我就举几个简单的,大家能说几个就好了: (1)分布式协调:这个其实是zk很经典的一个用法,简单来说,就好比,你A系统发送个请求到mq,然后B消息消费之后处理了.那A系统如 ...

  7. 笔记:使用Python解析JSON

    使用Python解析JSON json是一种轻量级的数据交换格式,易于阅读和编写. json函数具体作用描述 函数 具体描述作用 json.dumps 将python对象编码为JSON字符串 json ...

  8. Android开发 WebView的详解

    前言 WebView 是Android显示html内容的主要方式,当然TextView也可以加载html内容.但是WebView除了功能更加强大,最重要的是还能调用Html里的JavaScript语言 ...

  9. mysql 表查询结果 总行数计算

    一般的查询语句是这样的 SELECT  id,name FROM SystemEvents WHERE  1=1 limit 9,10 SELECT  * FROM SystemEvents WHER ...

  10. [ javasript ] javascript中的each遍历!

    1.数组中的each var arr = [ "one", "two", "three", "four"]; $.eac ...