sas单变量的特征分析
大炮,我有个烦恼,我领导最近老叫我单变量结合因变量分析,但是都是分段分析,我总是写proc sql然后group by
,但是这个过程好无聊啊,有木有什么新的代码,让我可以分析的快点啊。
最近写了个宏,刚好可以解决你这个问题,在上代码之前,先来个结果图

詹大炮
这个结果对于分析来说是不好的,因为这个结果没啥实际意义,说白了就是跟因变量没关系,但是这个图我们不是要来讲变量怎么有用,我们要介绍的是这段代码最后呈现的一个结果是怎样的。
代码:
%macro ChcAnalysis(DSin, DVVar, VarX,
NBins, Method, DSChc);
proc sort data=&DSin;
by &VarX;
run;
Data temp;
set &DSin ;
by &VarX;
_Obs=_N_;
keep &DVVAr
&VarX _Obs;
run;
proc sql noprint;
%if &Method=1 %then
%do;
select count(&DVVar)
into :N from temp;
select max(_Obs), min(_Obs) into :Vmax,
:Vmin from temp;
%let
BinSize=%sysevalf((&Vmax)/&Nbins);
%let LB_1=0;
%do i=1 %to
%eval_r(&Nbins-1);
%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);
%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
_obs>=&&Lb_&i
and
_obs<&&Ub_&i;
%end;
%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);
%let
UB_&NBins=&Vmax;
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
_obs>=LB_&NBins and
_obs<=UB_&NBins;
%end;
%else %do ;
select count(&DVVar)
into :N from temp;
select max(&VarX),
min(&VarX) into :Vmax, :Vmin from temp;
%let
BinSize=%sysevalf((&Vmax-&Vmin)/&Nbins);
%let LB_1=&Vmin;
%do i=1 %to
%eval_r(&Nbins-1);
%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);
%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
&VarX>=&&Lb_&i
and
&VarX<&&Ub_&i;
%end;
%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);
%let
UB_&NBins=&Vmax;
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
&VarX>=&&Lb_&i
and
&VarX<=&&UB_&i;
%end;
quit;
data &DSChc;
%do i=1 %to &NBins;
Bin=&i;
LowerBound=&&LB_&i;
UpperBound=&&UB_&i;
if
(&&sum_&i =. ) then
N_1=0; else
N_1=&&Sum_&i;
if
&&N_&i=. then
BinTotal=0; else
BinTotal=&&N_&i;
N_0 = BinTotal-N_1;
Percent_1=100*N_1/BinTotal;
Percent_0=100*N_0/BinTotal;
output;
%end;
Run;
proc datasets nodetails nolist
library=work;
delete temp;
run;
quit;
%mend;
詹大炮
还是老样子,分段介绍。
01
% ChcAnalysis(DSin, DVVar, VarX, NBins,
Method, DSChc);
DSin:填入的是原数据集;
DVVar:填入因变量,这里我们分析的是二元的因变量,所以因变量一定要是二元的,并且必须是数值的0,1。因为在代码中设定的就是这样子的,至于你问我为什么不能是字符,那是因为我还没能耐写字符的。
VarX:你要分析的变量(数值的哈)
NBins:分几段分析。结果的例子是分了5段;
Method:怎么分。1-等高度分,2-等宽度分。我的结果图那个是按2分的。
DSChc:结果数据集的输出名字。
02
proc sort data=&DSin;by
&VarX;run;
Data temp;
set &DSin ;
by &VarX;
_Obs=_N_;
keep &DVVAr
&VarX _Obs;
run;
将原数据集中的变量排序,后面的分组的时候要用到。然后保留要分析的变量在temp数据集中,产生变量_Obs,作为序号,这是等高度分析的时候要用的。等高度的意思就是每个区间的数量是一样的,等宽度的意思是,区间的的差值是一样的。两个不同的情况,在分析的时候,如果等宽的结果你觉得不是很明显可以分析的话,就换等高,任意切换哈。
temp的数据集是长这样子的:

_obs是观测的序号。
03
proc sql noprint;
%if &Method=1 %then
%do;
select count(&DVVar)
into :N from temp;
select max(_Obs), min(_Obs) into :Vmax,
:Vmin from temp;
%let
BinSize=%sysevalf((&Vmax)/&Nbins);
%let LB_1=0;
%do i=1 %to
%eval_r(&Nbins-1);
%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);
%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
_obs>=&&Lb_&i
and
_obs<&&Ub_&i;
%end;
%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);
%let
UB_&NBins=&Vmax;
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
_obs>=LB_&i. and
_obs<=UB_&i.;
%end;
%else %do ;
select count(&DVVar)
into :N from temp;
select max(&VarX),
min(&VarX) into :Vmax, :Vmin from temp;
%let
BinSize=%sysevalf((&Vmax-&Vmin)/&Nbins);
%let LB_1=&Vmin;
%do i=1 %to
%eval_r(&Nbins-1);
%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);
%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
&VarX>=&&Lb_&i
and
&VarX<&&Ub_&i;
%end;
%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);
%let
UB_&NBins=&Vmax;
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
&VarX>=&&Lb_&i
and
&VarX<=&&UB_&i;
%end;
quit;
我知道你肯定要说,这密密麻麻的%
&*我不想看。但是你看下嘛,不难的,我介绍介绍给你看嘛。
首先这段代码需要分成两步来看,第一步是当我们的&Method=1
的情况执行do后面的程序,反之,则是当我们的&Method=2的时候的情况啦。
然后我们来讲&Method=1情况时执行的代码:
select count(&DVVar)
into :N from temp;
select max(_Obs), min(_Obs) into :Vmax,
:Vmin from temp;
第一个select赋值宏是算出全部的观测数。
第二个select是算出最大的那个序号,其实我个人觉得这步有点多
余,你想直接用n也可以的,只是我想跟&Method=2的思路一样,所以就没删。
%let
BinSize=%sysevalf((&Vmax)/&Nbins);
%let LB_1=0;
%do i=1 %to
%eval_r(&Nbins-1);
%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);
%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
_obs>=&&Lb_&i
and
_obs<&&Ub_&i;
%end;
BinSize因为是&Method=1,所以这里BinSize是区间的差值,这里有个宏函数%sysevalf就自己百度下用法吧,这里就不介绍了。%do
i=1 %to
%eval_r(&Nbins-1);这一步就开始循环,这里为什么只循环到倒数第二个呢,是因为倒数第一个直接就是剩下的全部,就不需要再区间限制了。
%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);
%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);
这两步是产生这个分组的上下区间,然后用于后面的select语句中的where条件,把该区间的数量统计出来。
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
_obs>=&&Lb_&i
and
_obs<&&Ub_&i;
%end;
这个过程特别注意的就是sum(&DVVar),是用sum,这就是我一开始为什么说因变量是二元的,而且要是0,1的情况就是方便这里统计啦。
%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);
%let
UB_&NBins=&Vmax;
select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp
where
_obs>=LB_&i. and
_obs<=UB_&i.;
%end;
这就是第四步啦,
%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);
%let
UB_&NBins=&Vmax;
产生最后的区间,这里的i是5了,其实我一直很不能理解到这步,为什么还可以输出i=5呢,不是i只循环到4吗?但是执行的时候就是这样子的,这个套路是仿照之前的等高度分变量区间的那个代码写的。
我还特地看了日志也循环了:

我觉得应该是sas的处理流程,在pdv层面应该可以解释,跪求大神在留言区解释。万分感激。
那么&Method=2的部分就留给你自己去看啦,还是&Method=1的那种套路,只是等区间变量等量而已。
04
data &DSChc;
%do i=1 %to &NBins;
Bin=&i;
LowerBound=&&LB_&i;
UpperBound=&&UB_&i;
if
(&&sum_&i =. ) then
N_1=0; else
N_1=&&Sum_&i;
if
&&N_&i=. then
BinTotal=0; else
BinTotal=&&N_&i;
N_0 = BinTotal-N_1;
Percent_1=100*N_1/BinTotal;
Percent_0=100*N_0/BinTotal;
output;
%end;
Run;
然后这部分就是以上产生的宏,拼接成结果数据集。这里应该注意的是,每循环一个,就是产生一条观测之后output到数据集,如此循环之后需知道i=&nbins为止。数据分析师培训
sas单变量的特征分析的更多相关文章
- R 单变量重命名与删除
单变量重命名 b = rename(b,c(target="flag")) 单变量删除 b = b[,names(b)!='age'] 或者 b[,"age&quo ...
- 机器学习之单变量线性回归(Linear Regression with One Variable)
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...
- Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...
- MATLAB 单变量函数一阶及N阶求导
1 对一维函数的求导及求特定函数处的变量值 %%最简单的一阶单变量函数进行求导 function usemyfunArray() %主函数必须位于最上方 clc clear syms x %syms ...
- 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)
面积与房价 训练集 (Training Set) Size Price 2104 460 852 178 ...... m代表训练集中实例的数量x代表输入变量 ...
- [数据可视化之一]Pandas单变量画图
Pandas单变量画图 Bar Chat Line Chart Area Chart Histogram df.plot.bar() df.plot.line() df.plot.area() df. ...
- Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)
一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...
- Ng第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 2.4 梯度下降 2.5 梯度下 ...
- python 单变量线性回归
单变量线性回归(Linear Regression with One Variable)¶ In [54]: #初始化工作 import random import numpy as np imp ...
随机推荐
- 什么是存根类 Stub
转:http://www.cnblogs.com/cy163/archive/2009/08/04/1539077.html 存根类是一个类,它实现了一个接口,但是实现后的每个方法都是空的. ...
- 牛客多校第五场 H subsequence 2 拓扑排序
题意: 给你长度最长为1000的字符串,这个字符串中最多有10种字母,每次给你两种字母,输出这两种字母在字符串中的相对位置,问你这个字符串原本是什么样子,如果不存在则输出-1 题解: 把整个字符串看作 ...
- 一篇关于Matcher find方法深刻理解的文章
文章目录 知识点 find find(int var1) reset group(int var1) 源码 故事是这样的 探索 问题解决 方法一: 方法二: 方法三: 总结 知识点 find 首先fi ...
- idea从github中pull或者push成功之后ssm项目全部controller报红色下划线的解决方案
某次从github上pull下来之后,报出如下一堆红色波浪线错误 解决方法: 在随便一个红色波浪线处,按下alt+enter,点击add maven dependency, 选中所有,点击添加即可,此 ...
- 使用JDK自带功能,实现一个简单的Web Service接口发布
万事开头难,本篇文章的目的就是使用JDK自带的功能,实现一个最简单的Web Service接口的发布. 下图是项目的组成,主要有三个部分,一个接口(WS),一个接口的实现类(WSImp),还有一个接口 ...
- 出现java.lang.NoClassDefFoundError: org/apache/commons/collections/FastHashMap错误问题解决
首先出现这个问题,你应该是用了 BeanUtils.populate(meter,map); import org.apache.commons.beanutils.BeanUtils;并且导入了co ...
- java-day05
数组概念 是一种容器,能够存放多个数据值 特点 多个数据值类型必须统一 是一种引用数据类型 程序运行时,数组长度不可改变 数组初始化 动态初始化格式 数据类型[] 数组名称 = new 数据类型[数组 ...
- 语音识别(语音转文字)&& 语音合成(文字转语音)
[语音合成API]SpeechSynthesisUtterance是HTML5中新增的API,用于将指定文字合成为对应的语音.也包含一些配置项,指定如何去阅读(语言,音量,音调)等 // 语音播报 s ...
- selenium基础(多表单切换、多窗口切换)
一.多表单的切换 frame:HTML页面中的一中框架,主要作用是在当前页面中指定区域显示另一页面元素: (HTML语言中,frame/iframe标签为表单框架) 在web ...
- 18-1-函数中this的指向
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...