正解:网络流

解题报告:

传送门!

一看就很网络流昂,,,于是现在的问题就变成怎么建图了$QwQ$

首先如果只有一个要求,那就直接按要求建图然后跑个最大流就好.

现在变成,有两个要求,必须同时满足,考虑怎么解决?

考虑拆点,把人拆成两个点,分别连食物和酒店,然后跑个最大流,做完了$QwQ$

$over$

对了这题有三倍经验,,,讨论区有分享$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define gc getchar()
#define t(i) edge[i].to
#define n(i) edge[i].nxt
#define w(i) edge[i].wei
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];~i;i=edge[i].nxt) const int N=+,M=N*,inf=1e9;
int head[M],ed_cnt=-,n,p,q,S,T,cur[M],nod_cnt,dep[M];
struct ed{int to,nxt,wei;}edge[M<<]; il int read()
{
ri x=;rb y=;rc ch=gc;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z){edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],};head[x]=ed_cnt;}
il bool bfs()
{
queue<int>Q;Q.push(S);memset(dep,,sizeof(dep));dep[S]=;
while(!Q.empty()){ri nw=Q.front();Q.pop();e(i,nw)if(w(i) && !dep[t(i)])dep[t(i)]=dep[nw]+,Q.push(t(i));}
return dep[T];
}
il int dfs(ri nw,ri flow)
{
if(nw==T || !flow)return flow;ri ret=;
for(ri &i=cur[nw];~i;i=n(i))if(w(i) && dep[t(i)]==dep[nw]+){ri tmp=dfs(t(i),min(flow,w(i)));flow-=tmp,w(i)-=tmp,ret+=tmp,w(i^)+=tmp;}
return ret;
}
il int dinic(){ri ret=;while(bfs()){rp(i,S,T)cur[i]=head[i];while(int d=dfs(S,inf))ret+=d;}return ret;} int main()
{
memset(head,-,sizeof(head));n=read();p=read();q=read();
S=;T=p+q+(n<<)+;rp(i,,p)ad(i,S,);rp(i,,n)ad(i+p+n,i+p,);rp(i,,q)ad(T,i+p+(n<<),);
rp(i,,n)rp(j,,p){ri tmp=read();if(tmp)ad(i+p,j,);}rp(i,,n)rp(j,,q){ri tmp=read();if(tmp)ad(j+p+(n<<),i+p+n,);}
printf("%d\n",dinic());
return ;
}

洛谷$P$1402 酒店之王 网络流的更多相关文章

  1. Luogu 1402 酒店之王(二分图最大匹配)

    Luogu 1402 酒店之王(二分图最大匹配) Description XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自 ...

  2. [Luogu 1402] 酒店之王

    题目 Description XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有 ...

  3. 「洛谷P1402」酒店之王 解题报告

    P1402 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只 ...

  4. P1402 酒店之王 网络流

    大水题,我自己瞎做就做出来了,没啥说的,zz建图,就是板子. 题干: 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等, ...

  5. LUOGU P1402 酒店之王 (网络流)

    解题思路 应该比较显然得能看出这是个网络流,将$S$与房间连边,房间与人连边,人与菜连边,菜与汇点连边,边的流量均为1.但这样是错误的,因为有可能一个人跑过去2的流量,所以要将人拆点限流. #incl ...

  6. 【洛谷P1402】酒店之王

    题目大意:有三个集合 \(P,Q,N\),P 与 N 集合之间存在一些有向边,N 与 Q 集合之间存在一些有向边.在三个集合中每个点最多只能利用一次的前提下,求最多能利用多少N 集合中的点,使得 \( ...

  7. 洛谷P2891 Dining P1402 酒店之王【类二分图匹配】题解+代码

    洛谷P2891 Dining P1402 酒店之王[类二分图匹配]题解+代码 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的 ...

  8. [luogu1402]酒店之王_网络流

    酒店之王 luogu-1402 题目大意:有n个人,p道菜,q个房间,每个人喜欢吃一些菜.喜欢住一些房间,如果一个人即住到了他喜欢的房间有吃到了他喜欢的菜,就对答案贡献++,求最大贡献. 注释:1&l ...

  9. 【刷题】洛谷 P1402 酒店之王

    题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜. ...

随机推荐

  1. Laravel 的HTTP请求#

    获取请求# 要通过依赖注入的方式来获取当前HTTP请求的实例,你应该在控制器方法中类型提示Illuminate\Http\Request 传入的请求的实例通过 服务容器自动注入: <?php n ...

  2. @atcoder - Japanese Student Championship 2019 Qualification - E@ Card Collector

    目录 @description@ @solution@ @accepted code@ @details@ @description@ N 个卡片放在 H*W 的方格图上,第 i 张卡片的权值为 Ai ...

  3. Pointers and Arrays_4

    1.编写程序expr,以计算从命令行输入的逆波兰表达式的值,其中每个运算符或操作数用一个单独的参数表示.例如,命令expr 2 3 4 + * 将计算表达式2×(3+4) 的值. #include & ...

  4. @codeforces - 708D@ Incorrect Flow

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个有源点与汇点的图 G,并对于每一条边 (u, v) 给定 ...

  5. 自定义element树表格图标

    如下图: css代码: /deep/.el-icon-arrow-right:before { content: "\e6d9"; } /deep/.el-table__expan ...

  6. 2011-04-21 运程连Oracle的方法

    oracle无法远程连接重要原因,即使防火墙开放1521端口, 但是返回包可能是随机端口,所以仍有可能被防火墙阻止. 解决方法: 在注册表中增加一个字符串值如下.可解决 花费两天找到的方法 [HKEY ...

  7. [转]来自后端的逆袭 blazor简介 全栈的福音

    背景 什么是SPA 什么是MPA MPA (Multi-page Application) 多页面应用指的就是最传统的 HTML 网页设计,早期的网站都是这样的设计,所之称为「网页设计」.使用 MPA ...

  8. Python--day26--类方法和静态方法

    类方法: 静态方法:

  9. [转]解决pip安装太慢的问题

    阅读目录 临时使用: 经常在使用Python的时候需要安装各种模块,而pip是很强大的模块安装工具,但是由于国外官方pypi经常被墙,导致不可用,所以我们最好是将自己使用的pip源更换一下,这样就能解 ...

  10. mysql 第三课 jdbc基础操作

    jdbc连接可以大致分为5步: 1.注册驱动 2.获取连接 3.编写语句 4.执行语句 5.关闭连接 其中可以设置参数等等. 1.我们先建一个项目目录: 其中com.etc.dao为数据访问对象 co ...