洛谷$P$1402 酒店之王 网络流
正解:网络流
解题报告:
一看就很网络流昂,,,于是现在的问题就变成怎么建图了$QwQ$
首先如果只有一个要求,那就直接按要求建图然后跑个最大流就好.
现在变成,有两个要求,必须同时满足,考虑怎么解决?
考虑拆点,把人拆成两个点,分别连食物和酒店,然后跑个最大流,做完了$QwQ$
$over$
对了这题有三倍经验,,,讨论区有分享$QwQ$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define gc getchar()
#define t(i) edge[i].to
#define n(i) edge[i].nxt
#define w(i) edge[i].wei
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];~i;i=edge[i].nxt) const int N=+,M=N*,inf=1e9;
int head[M],ed_cnt=-,n,p,q,S,T,cur[M],nod_cnt,dep[M];
struct ed{int to,nxt,wei;}edge[M<<]; il int read()
{
ri x=;rb y=;rc ch=gc;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z){edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],};head[x]=ed_cnt;}
il bool bfs()
{
queue<int>Q;Q.push(S);memset(dep,,sizeof(dep));dep[S]=;
while(!Q.empty()){ri nw=Q.front();Q.pop();e(i,nw)if(w(i) && !dep[t(i)])dep[t(i)]=dep[nw]+,Q.push(t(i));}
return dep[T];
}
il int dfs(ri nw,ri flow)
{
if(nw==T || !flow)return flow;ri ret=;
for(ri &i=cur[nw];~i;i=n(i))if(w(i) && dep[t(i)]==dep[nw]+){ri tmp=dfs(t(i),min(flow,w(i)));flow-=tmp,w(i)-=tmp,ret+=tmp,w(i^)+=tmp;}
return ret;
}
il int dinic(){ri ret=;while(bfs()){rp(i,S,T)cur[i]=head[i];while(int d=dfs(S,inf))ret+=d;}return ret;} int main()
{
memset(head,-,sizeof(head));n=read();p=read();q=read();
S=;T=p+q+(n<<)+;rp(i,,p)ad(i,S,);rp(i,,n)ad(i+p+n,i+p,);rp(i,,q)ad(T,i+p+(n<<),);
rp(i,,n)rp(j,,p){ri tmp=read();if(tmp)ad(i+p,j,);}rp(i,,n)rp(j,,q){ri tmp=read();if(tmp)ad(j+p+(n<<),i+p+n,);}
printf("%d\n",dinic());
return ;
}
洛谷$P$1402 酒店之王 网络流的更多相关文章
- Luogu 1402 酒店之王(二分图最大匹配)
Luogu 1402 酒店之王(二分图最大匹配) Description XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自 ...
- [Luogu 1402] 酒店之王
题目 Description XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有 ...
- 「洛谷P1402」酒店之王 解题报告
P1402 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只 ...
- P1402 酒店之王 网络流
大水题,我自己瞎做就做出来了,没啥说的,zz建图,就是板子. 题干: 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等, ...
- LUOGU P1402 酒店之王 (网络流)
解题思路 应该比较显然得能看出这是个网络流,将$S$与房间连边,房间与人连边,人与菜连边,菜与汇点连边,边的流量均为1.但这样是错误的,因为有可能一个人跑过去2的流量,所以要将人拆点限流. #incl ...
- 【洛谷P1402】酒店之王
题目大意:有三个集合 \(P,Q,N\),P 与 N 集合之间存在一些有向边,N 与 Q 集合之间存在一些有向边.在三个集合中每个点最多只能利用一次的前提下,求最多能利用多少N 集合中的点,使得 \( ...
- 洛谷P2891 Dining P1402 酒店之王【类二分图匹配】题解+代码
洛谷P2891 Dining P1402 酒店之王[类二分图匹配]题解+代码 酒店之王 题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的 ...
- [luogu1402]酒店之王_网络流
酒店之王 luogu-1402 题目大意:有n个人,p道菜,q个房间,每个人喜欢吃一些菜.喜欢住一些房间,如果一个人即住到了他喜欢的房间有吃到了他喜欢的菜,就对答案贡献++,求最大贡献. 注释:1&l ...
- 【刷题】洛谷 P1402 酒店之王
题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜. ...
随机推荐
- 模板—FFT
卷积:$C[i]=\sum \limits_{j=0}^{i}A[j]*B[i-j]$可以画图理解一下其实就是交叉相乘的和. 卷积可以看作两个多项式乘积的形式,只不过求出的结果的项数不同. FFT讲解 ...
- 知识点补充,set集合,深浅copy
一:对之前知识点的补充 1;字符串(str)中的join方法.把列表转换成字符串 2;列表list[ ]和字典dic{ }在循环过程中不能字节删除.需要把要删除的内容记录在新列表中.然后在循环新列表, ...
- 【Bzoj1875】HH去散步
[Bzoj1875]HH去散步 先说一下边点互化的思路(貌似这种题不多?),以后看见边数少的要死的记得想边点乎化,将无向边变成有向边在考虑边之间的可达性,如果边x的终点是边y的起点(前提不是同一条边) ...
- 解决bootStrap selectpicker 下拉栏上方弹出
最近项目中遇到了一个使用bootStrap selectpicker 进行下拉栏展示的时候出现在元素上方弹出展示的问题,可把我难受坏了,和测试互怼最终以失败告终(人家还是一个娇滴滴的小姑娘),在查了a ...
- 深度学习——Xavier初始化方法
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...
- BZOJ 1935 Tree 园丁的烦恼 CDQ分治/主席树
CDQ分治版本 我们把询问拆成四个前缀和,也就是二维前缀和的表达式, 我们把所有操作放入一个序列中 操作1代表在x,y出现一个树 操作2代表加上在x,y内部树的个数 操作3代表减去在x,y内部树的个数 ...
- 2012.2.1datagridview用法小结
dgv1.RowHeadersVisible = false; //最左侧栏消失 dgv1.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode. ...
- python不得不知的几个开源项目
1.Trac Trac拥有强大的bug管理 功能,并集成了Wiki 用于文档管理.它还支持代码管理工具Subversion ,这样可以在 bug管理和Wiki中方便地参考程序源代码. Trac有着比较 ...
- mybatis 一对多查询 集合创建空对象的问题
在做 mybatis 一对多查询的时候, resultMap 里面用到了集合标签 collection ,后来发现 当该条数据没有子集的时候, collection 会自动创建一个属性都是null的对 ...
- Python--day28--摘要算法
摘要算法: